
VLF Receiver Toolkit - Notes

For version 0.9p of vlfrx-tools

 Index

Installation

Ubuntu

Raspberry Pi

Installation

Prerequisite Packages

Streams and Buffers

Lock-free buffers

Stream Naming

General Notes

Messages

Log files

Network connections

Package version

Test scripts

Time specifiers

Complex coefficients

Absolute phase

Signal Processing Modules

vtcat: Copy input to output

vtmix: Additive mixer

vtmult: Multiplicative mixer

vtfilter: Low pass, high pass and automatic notch

filter

vtjoin: Join and align two or more streams

vtresample: Change the sample rate of a stream

vtblank: Impulsive noise blanker

vtgen: Signal generator

vttime: Refine timestamp and sample rate

vtfm: Modulate or demodulate FM

vtam: Analytic magnitude

Input/Output Programs

vtcard: Read data from a soundcard

vtvorbis: Encode/decode to/from ogg/vorbis

vtflac: Encode/decode to/from flac

vtraw: Extract the audio signal from a stream

vtain: Read data from Beaglebone ADCs

vtrtlsdr: Take data from RTL2832U based dongle

vtsdriq: Take data from rfspace SDR-IQ receiver

vtdata: Read data from ASCII source

vtwavex: Extract signal from WAV file

Display and Plotting Programs

vtstat: Display stream info

vtscope: Oscilloscope

vtspec: Spectrum display

vtpolar: Polar display

vtplot: Time domain plotting

vtsidex: SID data extraction

vtsidplot: SID monitor plotting

vtsidgram: Spectrograms from SID monitor

vtsgram: Spectrogram plotting

Signal Analysers

vtcmp: Compare two channels

vtnspec: Narrow band spectrum

analyser

vtwspec: Wide band spectrum analyser

vtsid: SID detector

vtevent: Whistler/riser event detector

vttoga: Sferic measurements

vtrsgram: Reassigned spectrogram

vtmatch: Matched filter/convolver

vtping: Meteor ping detector

Storage and Retrieval

vtwrite: Write a stream to storage

vtread: Read a stream from storage

Utility Programs

vtwait: Wait for data

vtps: List toolkit processes

vttop: Display toolkit processes

vtcardplot: Plot soundcard performance

vttimeplot: Plot timing system

performance

vtdate: Timestamp conversion utility

vtspot: Geographic calculations

vtubx: Configure u-blox GPS

Soundcards

Timestamps and alignment

Using a pulse-per-second

Timing system setup

Hints and Tips

Playing a stream

Whistler detection

Weak signal detection

Stream server

Storage and retrieval

SID monitoring

Time domain plots

Spectrogram plots

Multi-channel reception

Filtering

Phase equalisation

Antenna synthesis

Polar displays

Analytic signals

Startup scripts

RTL2832U

U-blox GPS

Lightning location

 Installation

Ubuntu

Installation is very easy on Ubuntu/Debian systems. Just run the following apt-get commands (prefix with sudo

if you haven't enabled the root login):

 apt-get install libasound2-dev

 apt-get install libvorbis-dev

 apt-get install libflac-dev

 apt-get install libx11-dev

 apt-get install libpng-dev

 apt-get install libxpm-dev

 apt-get install libncurses5-dev

 apt-get install libforms2

 apt-get install libforms-dev

 apt-get install libshout3-dev

 apt-get install libsamplerate0-dev

 apt-get install libfftw3-dev

 apt-get install sox

 apt-get install gnuplot

That takes care of all the packages that the toolkit depends on. Then install the toolkit with the instructions

below.

If you're not running Ubuntu or some other flavour of Linux that uses apt-get, then see the section Prerequisite

Packages below.

Raspberry Pi

Using Raspberry Pi for audio A/D with a USB sound dongle is not recommended due to fundamental and

apparently unsolvable problems with the USB sub-system. USB isochronous data packets are silently and

frequently dropped (even when the CPU is lightly loaded) and this renders the USB device useless for reliable

signal capture.

Currently (2018) the best option for capture on the Raspberry Pi are the 'Audio Injector' (stereo) and 'Octo' (6

input channels) audio interfaces made by Flatmax Studios. These cards use I2S/DMA for data transfer. They still

produce the occasional read error (which vtcard recovers from) but are quite usable - certainly far better than

USB.

Installation is straightforward on the RPi. If running the Raspbian operating system, use the apt-get commands

listed for Ubuntu above. Then continue with the installation instructions below.

Installation

Download the tgz file and unpack. cd down into the package directory and run

 ./configure

Configure will report if any prerequisite packages are missing. Some of these can be ignored given suitable

options to configure.

On the Raspberry Pi, if you are using Raspbian or Archlinux you should enable the use of hardware floating

point, configure with

 ./configure --with-hardfloat

The command ./configure --help will show all the configuration options. When configuration is successful,

continue with the installation,

 make

 make install

Programs will be installed in /usr/local/bin.

If you get a make error on OpenBSD, you may need to do

 LDFLAGS="-lpthread -lspeex -lz -lossaudio"

 export LDFLAGS

http://www.audioinjector.net/

and then repeat the configure and make install.

If make reports an undefined OV_ECTL_COUPLING_GET then you must upgrade your vorbis library libvorbis to

version 1.3.2 or later, http://www.xiph.org/vorbis/.

Prerequisite Packages

You can run ./configure first to see which packages, if any, are missing. Maybe you don't need them and can

turn off their requirement with configuration options mentioned below. All the prerequisites are easy to obtain

and install.

alsa/oss

The operating system will probably already have ALSA installed and configured. Older systems, or non-linux, or

those few cards that don't have working ALSA support but do have 4Front OSS support, may require installation

of OSS.

Some systems such as Ubuntu don't install development files. If you find that the package configures itself for

OSS but you know you have ALSA drivers installed, try

 apt-get install libasound2-dev

The package can be compiled without soundcard support if required. This may be appropriate if the installation

is purely for post-processing of data and is not required to read from a soundcard. In this case, configure the

package with --without-soundcard and program vtcard will not be compiled.

fftw

Install with

 apt-get install libfftw3-dev

or download from http://www.fftw.org/ and install.

libvorbis

Required only for program vtvorbis. Disable this requirement with --without-vorbis. Download from

http://www.xiph.org/vorbis/ and install. Ubuntu users can just do

 apt-get install libvorbis-dev

Ubuntu may also need

 apt-get install libshout3-dev

libFLAC

Required only for program vtflac. Disable this requirement with --without-flac. To install flac, download from

http://flac.sourceforge.net/download.html, or on Ubuntu, do

 apt-get install libflac-dev

xforms

This is used to make control panels for some of the programs. On Ubuntu and similar, install with

 apt-get install libforms2

 apt-get install libforms-dev

or download from http://xforms-toolkit.org/ and install. Ubuntu users may also need

 apt-get install libjpeg62

 apt-get install libjpeg62-dev

libsamplerate

Required for sample rate conversion vtresample. In the unlikely event that you don't need this, configure with --

without-resample. Otherwise, download from http://www.mega-nerd.com/SRC/ and install.

ncurses

This is used by vtstat to report the state of a stream. You will probably already have the libraries installed, but

some Linux installations don't include the ncurses.h header file. On Ubuntu you may have to do

 apt-get install libncurses5-dev

Otherwise, disable the requirement (and program vtstat) with configure option --without-curses.

http://www.xiph.org/vorbis/
http://www.fftw.org/
http://www.xiph.org/vorbis/
http://flac.sourceforge.net/download.html
http://xforms-toolkit.org/
http://www.mega-nerd.com/SRC/

libshout

This package is used by vtvorbis -u to uplink data to an icecast server. You can bypass this requirement with --

without-shout, or download from http://www.icecast.org/download.php and install.

X11

Used along with xforms for interactive displays on some of the programs. These are optional. Remove with --

without-x11; On Ubuntu you may have to do

 apt-get install libx11-dev

 apt-get install libpng12-dev

 apt-get install libxpm-dev

Other Packages Some other packages that are very useful to have, are Sox and gnuplot. On Ubuntu, install

these with

 apt-get install sox

 apt-get install gnuplot

 Streams and Buffers

Signal streams

The programs in this package exchange data with one another using a simple packeted data format. Each

packet is timestamped and contains sample rate calibration information. The data is streamable, meaning that

a program can begin work in the middle of a stream and does not need to see the start. Signal streams can be

exchanged through a choice of files, fifos, lock-free buffers, and network connections.

Stream timestamps are preserved through the toolkit programs and data storage and retrieval. Timestamp

resolution is 1nS and the accuracy can be better than 100nS if a good PPS is available from a GPS.

Signal samples within the stream have a choice of formats: 8, 16, or 32 bit signed integers, or single or double

precision floating point.

A stream can contain any number of signal channels and the samples are interleaved into frames. All the

channels in a stream must share the same sample format.

Lock-free buffers

These are circular buffers established using shared memory and appear as virtual files under the directory

/dev/shm or /run/shm. Each buffer has just a single input process but any number of processes can consume

data from the buffer. The input process will never block waiting for consumers. Consumer processes will block

and sleep until a packet of data is available. If a consumer process cannot keep up with the flow of data, the

buffer will eventually overrun and consumers will be able to detect this and take appropriate action.

Lock free buffers are used where a stream needs to be split n-ways, or where upstream processing needs to be

protected from downstream hold-ups.

Stream Naming

Stream files and named pipes use normal unix pathnames. Lock-free buffers use a buffer name which is

prefixed with an '@' character to distinguish it from a pathname. Network connections begin with a '+'

character.

Examples:-

 /tmp/foo A file or named pipe;

 @bar A lock-free buffer called 'bar';

 - Standard input or standard output FIFOs;

 +foo,41720 Send output by TCP/IP to port 41720 on host 'foo';

 ++foo,41720 As above but with persistent network connection;

 +41720 Listen for input on TCP/IP port 41720;

 ++41720 As above, but listen again if connection dropped;

http://www.icecast.org/download.php

All streams names can be qualified with additional syntax. Input streams can specify which channels within

them are to be used. The name is followed by a colon and a comma-separated list of channel numbers

(counting from 1).

Examples:-

 /tmp/foo Use all channels from input /tmp/foo;

 @bar:4 Use only the 4th channel;

 /tmp/foo:1,3 Use first and third channels;

 +51300:2 Listen on port 51300 and use the 2nd channel;

Output stream names may be qualified to specify a data format and, in the case of lock-free buffers, a buffer

size.

 /tmp/foo Output to file or pipe /tmp/foo using 8 byte floating point;

 /tmp/foo,i2 Use 2 byte signed integers instead;

 @bar,i4 Create a buffer of 4 byte signed integers, default 10 seconds length;

 @bar,20,i4 Create a 20 second buffer of 4 byte signed integers;

 @bar,20 Create a 20 second buffer using default f8 format;

 +bar,51300,i2 Send to port 51300 at hostname 'bar' using 2 byte signed integers;

The available data format options are:

f8 8 byte floating point (ie double precision);

f4 4 byte floating point (ie float);

i4 4 byte signed integer;

i2 2 byte signed integer;

i1 1 byte signed integer;

All channels within a stream will use the same data format. The default format is f8. When using integer data

formats, the programs scale sample values so that +/-1.0 corresponds to the maximum value represented by

the integer size. You must ensure that output signals from programs directed into integer formatted streams

don't exceed +/-1.0.

Network connections can be made to be persistent by beginning the stream name with ++ instead of +, for

example ++bar,51300. In this case if a connection drops, or a connection fails to be established, the sending end

will keep retrying and the receiving end will continue to listen. This prevents a processing pipeline from

collapsing if a network connection has a problem, and is useful in start-up scripts when the order in which hosts

are booting is not guaranteed.

 General Notes

Commands

Many of the toolkit programs have a lot of command line options, too many to remember. All the programs will

accept an option -? which outputs a usage message and option summary. Options and arguments follow the

usual unix command line syntax of space separated fields and getopt conventions. Where some options need

sub-arguments these are comma separated.

Messages

All of the programs will accept one or more -v options to indicate the level of verbosity of messages. With no -v,

only significant events are reported. Using -v will give some additional info, -vv for even more detail, and -vvv is

only useful for software debugging.

Messages will go to a logfile if one is specified (-L), and to the stderr stream unless the program is put into

background with a -B option.

Log files

Many of the programs will produce a log file if given a -L logfile option. The logfile argument gives the

pathname to the required log file. The log file will receive all the messages selected by the -v options. Log files

are written with an open/append/close sequence for each message, therefore they can easily be removed or

renamed for log rotation.

Network connections

Network connections specified by the + or ++ syntax are compatible with the netcat utility. For example

 bar $ vtstat +41720

 foo $ vtcat @source +bar,41720

has the same effect as

 bar $ vtstat +41720

 foo $ vtcat @source | nc bar 41720

or

 bar $ nc -l 41720 | vtstat

 foo $ vtcat @source | nc bar 41720

but requires one less process in the pipeline at each end.

When using the ++ syntax to make a persistent connection, the sending end will wait 5 seconds if the

connection drops and then try to reconnect, retrying every 5 seconds. A receiving end will wait 1 second after

loss of connection and go back to listening. Data will usually be lost during a network interruption and the

receiving end will detect a timing break on the stream. When a connection is reestablished, the stream

parameters (format,sample rate) must be the same as before, otherwise the receiving end will exit with an

error.

With network connections set up using the + syntax, the sending end always makes the connection and the

receiving end always listens. If you want the receiving end to make the connection, eg to contact and downlink

data from a server, you must use netcat.

Package version

The installed version can be queried with

 vtstat -V

Test scripts

The installation can be tested using the scripts in the test subdirectory. These exercise some of the functions of

the software. The test scripts will create some temporary files /tmp/vttest*.

After doing a make install, run all the test scripts with

 cd test

 ./runall

Time specifiers

Many of the programs accept a timestamp or timestamp range introduced by a -T option. Timestamps are

given in ISO format,

 YYYY-MM-DD_HH:MM:SS.ssss...

or as a real number of seconds since 1970-01-01 00:00:00 and are always in UT regardless of local time zone.

The fractional part of the second has nanosecond resolution. Timestamps may be truncated, but at least YYYY-

MM must be given. The special values 'today' and 'yesterday' can be used for the previous two midnights and

the value 'now' is replaced by the current time when the command line is parsed. The following are valid

timestamps,

 2010-12-24_23:59:58.479312

 2010-12-24_23:59:58

 2010-12-24_23:59

 2010-12-24_23

 2010-12-24

 1293235198.479312

A range of time is referred to in these notes as a 'timespec' and has the forms

 start,end

 start,

 ,end

where start and end are timestamps. If start is missing, the start timestamp defaults to the beginning of data. If

end is missing, the default is the end of data or the current time.

end can be supplied as a real number beginning with a '+'. This indicates a number of seconds offset from the

start time. For example the following two timespecs both select the same period,

 2011-03-27_12:15,2011-03-27_13:15.25

 2011-03-27_12:15,+3600.25

The absence of a timespec usually implies the selection of all available data.

Complex coefficients

Some of the programs accept complex numbers on their command line or configuration, such as the -c option

of vtmix or the coefficients in the eqmap of vtfilter. This package uses a uniform syntax for these complex

coefficients.

Coefficients may be given by their real and imaginary components, for example

 1.5+0.2j 1.5-0.2j -1.5+2e-1j

Note the 'j' follows the imaginary part. The coefficient can have no imaginary part, or no real part, for example

 2.5 2.5j -4.1e-2j j -j

Alternatively, coefficients may be given by their magnitude and phase lead in degrees, as follows

 3.5/45 -1.5/350 4.5e-3/-10

In either form, coefficients must not have any embedded spaces.

Absolute phase

Several of the programs report either 'absolute phase' or complex amplitudes. For example vtsid records

absolute phase, vtwspec and vtnspec report complex amplitudes. The absolute phase and the phase angles of

the complex amplitudes are referenced to a cosine wave having a phase of zero at zero timestamp, ie at 1970-

01-01_00:00:00.0

In other words, if vtsid reports that a carrier at frequency F has absolute phase P degrees, then that carrier can

be reconstructed with a sinusoidal factor of

 cos(2*pi*F*T + P*pi/180)

where T is a timestamp.

Periodic waveforms produced by the signal generator vtgen are also referenced to a phase of zero at zero

timestamp.

A consequence is that all these programs can be stopped and restarted and they will continue to report or

generate the same phase.

 Signal Processing Modules

vtcat

Copy input stream to output stream.

 vtcat [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -T timespec Extract specified time range

 -S secs Skip the first secs seconds of input

 -E secs Transfer only specified number of seconds, then exit

 -p Pad timing breaks with zeros

 -a secs Adjust timestamp by adding an offset of secs seconds

examples:

 # Select only channels 1 and 3 from the input stream

 vtcat input:1,3 output

 # Swap left and right on a stereo stream

 vtcat input:2,1 output

 # Change a stream data format to 4 byte integers

 vtcat input output,i4

 # Get the stream from buffer @raw on host foo and load it into a buffer

 # of the same name on localhost

 ssh -nc blowfish foo vtcat @raw | vtcat - @raw

 # Send data from channel 2 of buffer @raw to port 9876 on host foo,

 # using 2 byte integer format, and maintain the connection

 vtcat @raw:2 ++foo,9876,i2

 # Listen for data on network port 9876 and transfer anything received

 # into a buffer @remote. Continue listening if the connection drops.

 vtcat ++9876 @remote

 # Extract a particular time range of data from a stream

 vtcat -T 2010-08-01_14:11:40,2010-08-01_14:33:20 input output

 # Extract 30 seconds of data starting at the given time, and make

 # a histogram from it

 vtcat -T 2010-08-01_14:11:40, -E30 input | vtstat -h bins=100

 # Subtract 9uS from the timestamp of the stream

 vtcat -a -9e-6 input output

This program is used for changing the format of a stream, or selecting particular channels from a stream, or

selectively transferring data between pipes, named fifos, and lock-free buffers.

If no output stream is specified, stdout is used. If no input or output stream is given, vtcat processes data

between stdin and stdout.

The timestamp of the stream may be adjusted with a -a option. The argument specifies the number of seconds

to add to the stream's timestamp.

One thing that vtcat doesn't do is concatenate streams. The standard Unix cat utility is adequate for that.

vtcat in conjuction with xinetd can be used to implement a simple stream server. For details see Stream server

vtmix

Additive mixer

 vtmix [options] -c matrow [-c matrow] ... [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -c matrow Define an output channel by its row of matrix coefficients

examples:

 # Turn single channel stream into 2 channel stream by duplication

 vtmix -c1 -c1 input output

 # Produce RH circular polarisation response from orthogonal loops

 # ch1 = E/W, ch2 = N/S, loop polarities in phase given north-east signal,

 # delay N/S by 90 deg and add to E/W

 vtmix -c1,-j input output

 # Or instead, advance E/W by 90 deg and add to N/S

 vtmix -cj,1 input output

 # Synthesise single loop oriented 040 deg from the above orthogonal loops

 # sin(40) = 0.643, cos(40) = 0.766

 vtmix -c0.643,0.766 input output

 # Produce RH and LH circular response as a two channel output stream

 vtmix -cj,1 -c1,j input output

 # As above, but include the original orthogonal channels to produce a

 # four channel output stream

 vtmix -cj,1 -c1,j -c1,0 -c0,1 input output

vtmix mixes the channels in the input stream according to the coefficients given by the -c matrow options. One

output channel is produced for each -c. The matrow argument is a comma-separated list of real or complex

coefficients and must have one coefficient (which may be zero) for each of the channels in the input stream.

For example,

 vtmix -c1.2+0.5j,-0.4-0.1j ...

produces an output channel formed from

 ch1 * (1.2 + j0.5) + ch2 * (-0.4 - j0.1)

If any of the coefficients contain imaginary parts, the mixing is performed in the frequency domain by means of

an overlap-add Fourier transform. If only real coefficients are given, the mixing is carried out in the time

domain.

Coefficients may be given as complex numbers or by magnitude and phase. See Complex coefficients for the

general syntax of the coefficients. Up to 32 input and output channels can be mixed.

vtmult

Multiplicative mixer

 vtmult -f freq [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -f freq Local oscillator frequency, Hz

examples:

 # Shift SAQ at 17.2kHz down to 400Hz

 vtmult -f16800 @source | vtmix -c1,-j - @dest

Each channel of the input is multiplied by a quadrature local oscillator to produce I and Q output signals. The

oscillator phase is determined from the input stream's timestamp and is zero degrees at 1970-01-01 00:00:00.

The mixer is balanced, so there is no output at the oscillator frequency unless there is a DC component in the

input signal.

There are two output channels, I and Q consecutively, for each input channel.

Sum or difference frequencies can be selected by following vtmult with vtfilter. Upper sideband can be

selected by following vtmult with vtmix -c 1,-j and lower sideband is obtained with vtmix -c 1,j.

vtjoin

Combine two or more streams, aligning by timestamp and correcting for sample rate differences.

 vtjoin [options] input1 [input2] ... output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

examples:

 # Join together the stream coming through named pipe /tmp/str1

 # with the stream on stdin, selecting just the first two channels

 # from stdin. Output to /tmp/joined

 vtjoin -- -:1,2 /tmp/str /tmp/joined

 # Turn a single channel stream into a 2 channel stream by duplication,

 # sending output to stdout

 vtjoin @test @test -

The input streams are merged together into a single output stream having a number of channels equal to the

sum of the selected input channels. All the input streams must have the same nominal sample rate. vtjoin uses

the timestamp information to align the inputs, and corrects for sample rate differences between the input

streams by duplicating or discarded samples as necessary.

The output stream always has the nominal sample rate, ie has sample rate calibration factor of 1.0. vtjoin does

not 'look' at the signals passing through it, and relies entirely on the incoming timestamps to do the alignment.

vtjoin must have an output stream specified, it does not default to stdout. Up to twenty input streams can be

joined.

vtsid

Monitor for sudden ionospheric disturbances.

 vtsid [options] -c config_file input_stream

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

This program monitors VLF signals within the stream and logs various signal parameters that may be used to

detect ionospheric disturbances. Either the whole band can be logged as an array of frequency bins, or specific

channels can be logged, or both. Data is saved into a database maintained by vtsid and the program vtsidex is

used to extract records.

Parameters which may be recorded against each bin or channel are:

Signal amplitude or power;

Absolute phase;

Relative phase between channels;

Bearing (goniometer, poynting vector, or NPE);

Elevation;

Polarisation and ellipticity;

If the input stream contains channels derived from orthogonal loops, the bearing (modulo 180 degrees) and

relative phase angle between loops can be logged. If an E-field channel is also available, the bearing can be

logged modulo 360 degrees by one of three methods. Elevation, polarisation and ellipticity can also be logged.

If the input stream is timestamped with sufficient accuracy, eg using vttime and GPS PPS, the absolute signal

phase can be logged, mod 360 for CW signals, or mod 180 for MSK signals.

The program is controlled by a configuration file specified by the -c option. An example configuration file

vtsid.conf is included in the package. Use this as a template, copy and edit to your requirements.

vtfilter

General purpose filter.

 vtfilter [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

http://abelian.org/vlfrx-tools/vtsid.conf.html

 -L name Specify logfile

 -e eqmap Load equalisation map

 -g gain Gain factor (default 1.0)

 -n bins Number of frequency bins (default 16384)

 -a notchspec Set automatic notch parameters

 notchspec consists of the following

 comma separated parameters:

 th=threshold, (default 6.0)

 bw=width, (notch width, default 1 bin)

 -h filterspec Apply a filter

 -h lp,f=corner,p=poles Butterworth low pass

 -h hp,f=corner,p=poles Butterworth high pass

 -h bp,f=center,w=width Brick wall bandpass

 -h bs,f=center,w=width Brick wall bandstop

examples:

 # Run an automatic notch filter combined with 5 pole high-pass

 # with 500Hz corner frequency, and 3 pole low-pass with 8kHz

 # corner, and an overall gain boost of factor 4.

 # Input from stdin and output to stdout.

 vtfilter -a th=7 -h hp,f=500,poles=5 -h lp,f=8000,poles=3 -g4

The input signal is transformed to the frequency domain and multiplied by an array of complex filter

coefficients, and is then transformed back to the time domain using an overlap-add scheme. The filter

coefficients are the product of all filter responses composed from the -h filterspec options.

An automatic notch filter, intended for removal of mains hum and harmonics, is activated with a -a notchspec

option. This filter monitors the mean amplitude in each frequency bin and if a bin mean exceeds the average of

its neighbours by a factor exceeding the threshold, the offending bin and some of its neighbours will be set to

zero.

A -n bins option can be used to specify the number of frequency bins to use in the Fourier transform. The

resulting resolution is given by sample_rate/(2 * number_of_bins). For best results with hum removal using the

automatic notch, the resolution should be set to around 0.5Hz or so. The number of bins can be any number

but powers of two are the most efficient.

An equalisation map can be applied with -e eqmap, where eqmap is a text file containing a list of frequencies and

complex coefficients. This mechanism is intended for use in equalising the amplitude and phase response of

separate receivers so that their signals can be coherently combined. The map file consists of one row per

frequency. Each row must start with the frequency and be followed by a list of complex coefficients, one for

each of the channels in the input stream. For example, a two channel input stream would require records in the

format:

 freq coeff_chan1 coeff_chan2

Frequencies are given in Hertz and the file can contain any number of entries, which must be in ascending

order of frequency. vtfilter interpolates logarithmically between eqmap records to obtain complex coefficients

for each frequency bin, such that the completed transfer function is represented on a Bode plot by straight

lines joining the eqmap points.

The equalisation coefficients default to unity at DC and the Nyquist frequency, so it usually necessary to

include at least these two points in the map file.

To inspect the computed filter coefficients, run vtfilter with the option -d1. The program will output a table of

coefficients in eqmap format, one row for each frequency bin, and then exit. The coefficients are the product of

all the filters and eqmap specified.

vtevent

Monitor for natural radio events - whistlers and risers.

 vtevent [options] -d outdir input_stream

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -p polarspec Input channel assignments

 -X Use X display

examples:

 # Read soundcard into buffer @eraw

 vtcard -Bvv -g1 -d hw:0,0 -r 48000 @eraw,20,i2

 # Filter and event detect

 vtfilter -a th=6.0 -h lp,f=10000,poles=2 -h hp,f=400,poles=2 @eraw |

 vtevent -v -L /tmp/vtevent.log -d /raw/events

This program uses a combination of principal component analysis and Hough transform to detect VLF signals

having reasonably narrow bandwidth along with rising or falling frequency. Falling frequency signals are

identified as whistlers if they conform to the expected shape of a whistler curve as defined by the low

frequency Eckersley approximation. A dispersion range of 12.2 to 114 is examined by the Hough transform.

If a -d outdir option is given, the detected events are saved under outdir. For each event, a thumbnail

spectrogram, raw data, and an information text file, are saved in files named by the event's timestamp.

Event detection thresholds are automatically set, relative to the background noise floor of the VLF input signal.

The input signal should be pre-filtered to remove hum, as in the example above. If the sample rate is higher

than 48k samples/sec, it is more efficient to resample to 48k/sec or lower before applying vtevent. A sample

rate of 32k/sec gives the best results.

The -X produces a display of the analysis processes. This is intended only for testing and tuning, not for normal

operation.

The option -p polarspec is required if the input consists of more than one channel. It indicates which channels

are E-field and which are H-field and their orientations. It allows vtevent to estimate the apparent bearing,

polarisation, and elevation of the whistler's incident signal. polarspec is a comma-separated list with one entry

per input channel. Entries are numeric to indicate a loop orientation, or the letter 'E' to indicate vertical E-field.

For example, with

 vtevent -v -d /datadir -p8,96,E

the program expects a 3-channel input with the first channel being a loop oriented on 8/188 degrees, the

second channel a loop on 96/276 degrees, and the third channel is the vertical E-field.

vttoga

Measure TOGA and other parameters of sferics.

 vttoga [options] input_stream

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -p polarspec Input channel assignments

 -N count Capture this many pulses, then exit

 -E seconds Operate on this many seconds of input, then exit

Frequency bands

 -F start,end Frequency range (default 4000,17000)

 -M start,end Mask frequency range (no default)

Trigger options

 -T timestamp One-shot trigger time

 -c Calibration mode

 -a thresh Amplitude trigger threshold (no default)

 -i thresh Impulse ratio trigger threshold (no default)

 -r rate Auto threshold to this rate/second

Quality options (experimental)

 -f ascore=val Value 0 to 1, spectrum quality limit (default 0)

 -f pscore=val Value 0 to 1, phase slope quality limit (default 0)

 -f tscore=val Value 0 to 1, TOGA quality limit (default 0)

Output options

 -e opts Extended output, opts:

 B Output multi-band measurements

 S Output spectrum

 T Output time domain

 P Output pulse measurements

 Q Output quality test results (experimental)

 -d outdir Output directory (default stdout)

 -G seconds Output file granularity (default 3600)

examples:

 # Set an initial threshold of 0.1 and then adjust it automatically to

 # average 10 triggers per second. Send the output to files under

 # directory /data/togas and start a new file on 10 minute boundaries.

 vttoga -a0.1 -r10 -d /data/togas -G600 @source

 # Capture 100 calibration pulses from a GPS injected into the VLF

 # receiver input. Record the spectrum and waveform of each.

 vttoga -a0.1 -eST c -N100 @source > datafile

 # Log the TOGAs and bearings from a 3-axis receiver. ch1 has azimuth

 # 102 deg and ch2 has azimuth 357 deg. ch3 is an E-field signal

 vttoga -a0.1 -r10 -p102,357,E @source > datafile

Sferics and other short pulses are analysed to measure their time of group arrival (TOGA) and some other

parameters. The input signal is examined continuously in the time domain in a window of duration 2mS. When

the program detects that the window contains an impulse exceeding a trigger threshold, the impulse is

analysed. When triggered, the program analyses 1.2mS of signal beginning 0.2mS before the trigger point. If

the analysis produces a result of sufficient quality, the measurements are output either to stdout or to a file.

Amplitude threshold triggering is enabled with a -a option. The program attempts to analyse all impulses with

peak amplitude exceeding the -a threshold. A -i option enables triggering based on significance of the impulse

in the time domain. The total energy in a 200uS window centered on the peak sample is divided by the total

energy in a 200uS window preceeding the pulse, to calculate an impulse ratio. If the ratio exceeds the

threshold set by a -i option, the pulse is analysed. If both -a and -i thresholds are given, then the impulse will

be analysed only if both thresholds are exceeded.

By default the band 4-17kHz is used. The lower bound avoids the cut-off frequency of the dominant

propagation mode. The upper bound is restricted to avoid strong MSK signals. One or more -F options can be

used to override the default. The TOGA is measured independently in each band.

If -r rate is given, the program adjusts the thresholds to maintain the specified average rate of triggers per

second. With multiple input channels, all channels are analysed given a trigger on any channel and the

computed TOGA is the amplitude-weighted average of the TOGAs of all the channels.

vttoga operates continuously on the input stream unless -T is given, in which case a single sferic is analysed

using the timestamp as a trigger time. The timestamp should point to a couple of hundred uS before the start

of the pulse. vttoga requires triggering to occur before the TOGA, therefore if the timestamp is too late, no pulse

will be analysed. If the timestamp is too early, accuracy will be reduced.

Using -E and/or -N, the program terminates after processing the given seconds of input stream or outputing the

specified number of sferics.

If a -p polarspec is given, the bearing of the sferic will also be measured. polarspec indicates which channels are

E-field and which are H-field and their orientations. polarspec is a comma-separated list with one entry per input

channel. Entries are numeric to indicate a loop orientation, or the letter 'E' to indicate vertical E-field. The loops

do not need to be orthogonal. The bearing is computed for each frequency bin and the output bearing is the

average weighted by the bin amplitudes.

Mains hum and MSK signals and other strong continuous signals should be removed before the signal reaches

vttoga, such that the sferics dominate the signal when examined with vtscope.

Output consists of 'H' records with the following format:

 H 1540525949.249031 1.635e-01 2.34 240.4

 | | | |

 TOGA RMS impulse bearing

The bearing field will only be present if a -p polarspec option has been given. The RMS field is the square root of

the average signal power summed over all the input channels.

With one or more -e options, additional records are output following the 'H' record, as described below.

A -eS option generates 'S' records which describe the pulse spectrum using one record per frequency bin:

 S 10105.263 0 3.993e-01 -46.464

 | | | |

 frequency mask amplitude phase

The phase is the unwrapped phase relative to zero phase at the TOGA at the center frequency of the analysis

band (-F freqspec) option. Mask is set to 1 if the bin has been masked from use in measurement by a -M option.

Option -eT produces 'T' records which describe the time domain waveform using one record per signal sample:

 T 1.979167e-04 3.9439e-02 -1.7892e-02 ... 4.9356e-02 2.2174e+04 0.37

 | | | | | |

 time offset amplitude amplitude ... analytic instantaneous analytic

 ch1 ch2 magnitude frequency phase (cycles)

The time offset is seconds relative to the start of the analysis window. The amplitudes are the input sample

amplitudes, one for each channel. These are followed by the magnitude of the complex analytic signal, the

instantaneous frequency and the phase in cycles.

A -eB option outputs measurements for each band specified by -F options.

 B 1573131278.748969 2.889e-03 4000 12000 0.001382 4.102e-02 24.6 12000 17000 ...

 | | | | | | |

 Reference Total Start End TOGA Band Phase Start End ...

 timestamp energy frequencies offset energy residual frequencies

The 'B' record timestamp is the timestamp of the first sample of the analysis window. Each band contributes to

the output record start and end frequencies, a TOGA offset relative to the reference timestamp, a band energy

and a phase residual in degrees.

With option -eP the program outputs 'P' records which describe the time domains peaks of the sferic waveform.

 P 0.008 4.984211e-04 -1.861e-02 11455 5.420608e-04 ...

 | | | | |

 peaks peak1 peak1 peak1 peak2

 ratio offset amplitude frequency offset

The offsets are seconds relative to the reference time given in the 'B' record. Up to six peaks are reported in

time offset order. Amplitude is the peak amplitude in sound card units and the instantaneous frequency is that

of the analytic signal at the peak. The peaks ratio is a quantity intended to distinguish short range sferics from

long distance sferics. The oscillatory waveform of a distant sferic will have a peaks ratio close to zero. A nearby

lightning stroke will produce a sferic with a distinct series of pulses with one polarity dominating and the peaks

ratio will be closer to +1.0 or -1.0 according to the polarity.

Option -eQ generates 'Q' records which report the quality of the sferic analysis.

 Q 0.84 0.95 0.78

 | | |

 ascore pscore tscore

The three quality scores have range 0.00 to 1.00. A perfect sferic is supposed to achieve a score of 1.00 in each

parameter. Lower values indicate lower quality. ascore is a measure of the quality of the sferic's spectrum. A low

value indicates the presence of multi-path or multi-mode interference, or a collision between two sferics. pscore

indicates the quality of the phase slope measurement. When measuring multi-band TOGAs (more than one -F

option), the TOGA of the lower frequency bands should be later than the TOGAs of higher frequency bands. The

value of tscore reports the extent to which this is the case. The tscore compares TOGAs from multiple bands so

if only one band is specified, the value will always be 1.00.

Following the extended output records is a single 'E' record:

 E

This marks the end of the records for that sferic and closes off the data set started by the 'H' record. The output

format is intended to be easy to parse using programs such as awk to separate and plot the data sets.

By default the stream of 'H' and optional extended records is sent to the standard output. If -d outdir is given,

the output is sent to files created under outdir,

 outdir/YYMMDD-HHMMSS

and a new file is started whenever the timestamp crosses a boundary set by the -G option.

Sferics successfully triggered and measured can be filtered based on their quality scores using the -f option.

For example, -f ascore=0.8 will discard sferics which have ascore less than 0.8. Multiple -f options can be

applied, or combined comma-separated, for example,

 -f ascore=0.8,pscore=0.7

Unless you particularly want to examine sferics above some specific strength, it is recommended to use the

impulse ratio triggering with -i instead. To capture as many good quality sferics as possible, use -i with a low

threshold such as 10, combined with filtering -f options to restrict the output to high ascore, pscore and tscore

values.

As an aid to set up, a -v option will output every hundred seconds an 'RC' report to stderr. For example,

 vttoga: RC raw 13565 ascore 9446 pscore 1202 tscore 18 out 2899

The raw count is the number of raw triggers accepted by the -a and -i trigger thresholds. out is the number of

sferics reported to the output file, having passed any quality score thresholds if set (-f options). The other

counts report the number of sferics dropped because they failed to meet the respective quality threshold. The

counts are reset to zero after each RC report, so just divide the numbers by 100 to obtain average rates per

second.

vtrsgram

Produce reassigned spectrogram.

 vtrsgram [options] [input]

options:

 -v Increase verbosity

 -oa ASCII data output

 -opng png image output (default)

 -ox X11 interactive display

 -b bins Number of frequency bins

 -s stepping Time axis stepping factor (default 2)

 -a factor Prune low amplitude points

 -r factor Prune long range points

 -p factor Mixed partial derivative pruning

 -g gain Image (brightness) factor (default 1.0)

 -m scale Image magnification factor (default 2.0)

 -n Produce ordinary non-reassigned spectrogram

 -h count Use homomorphic vertical EQ

 -w window Specify window function:

 cosine (default), blackman, hamming,

 nuttall, hann;

examples:

 # Render the whistler sample using 320 bins, advancing the FT frame by

 # half the FT width. Render as a png file four times the size of the

 # STFT grid and discard the weakest 30% of points.

 vtrsgram -b320 -s2 -g4 -m4 -a0.3 /raw/whistlers/1321774508 > 1321774508.png

 # As above but ASCII output, -g and -m don't apply.

 vtrsgram -b320 -s2 -a0.3 /raw/whistlers/1321774508 > 1321774508.dat

This program produces a short time Fourier transform of its input stream on a regular F,T grid of bins frequency

values and time intervals of 2 * bins/(stepping * sample_rate) seconds. The amplitudes of the grid cells are then

reassigned to new non-grided F,T points according to the reassignment method of Auger and Flandrin. The T

value is modified according to the local group delay of the STFT cell and the F value is reasigned to the

instantaneous frequency of the cell.

If -oa is given, the reassigned points are output as 3-column ASCII numeric values: F, T and RMS amplitude.

Without -oa, the reassigned points are mapped to a new grid of size scale times the original STFT grid and the

result is output as a png file. The -g gain option allows the brightness to be adjusted, with larger values of gain

causing high amplitude points to saturate and low amplitude points to become more visible.

The -s stepping option indicates how far the Fourier transform window advances for each T step of the initial

STFT spectrogram. With stepping of 1, the frame advances by the FT width and each input sample is used only

once. A stepping of N advances the frame by 1/Nth of an FT frame and each input sample is used N times.

Weak amplitude points can be pruned with -a prune where prune is a number between 0.0 (no pruning) and 1.0

(everything pruned). Reassigned points are ranked in amplitude order and the weakest prune fraction are

discarded. A typical value for prune would be 0.5 which starts to have a significant effect on the image.

Points lacking local support can be pruned with -p factor which examines each point's mixed partial derivative

of phase with respect to time and frequency, as per Nelson's method. Smaller values of factor will remove more

points. -p0.6 gives quite significant pruning, -p2.0 gives slight pruning.

Range pruning is activated with -r factor and this removes points where the reassignment moves the point by

more than factor times the STFT cell size. This exploits the redundancy present in the STFT and a point pruned

by this option will usually be reinstated more accurately by reassignment of a closer STFT cell. A typical value

for factor would be 2.0 and larger factors have less effect.

Intensity variation in the vertical direction can be levelled off using the homomorphic filtering option -h count

where count is a small integer. The initial STFT is transformed to a 2D log spatial frequency domain and the

lowest count number of vertical spatial frequencies are removed. The effect is to remove multiplicative gain

variation with frequency. Typical values of count range from 1 to 20 and 10 is often sufficient.

vtmatch

Matched filtering and convolution

 vtmatch -t template [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -F freqspec Select frequency range (default all)

 -c Convolve input stream with template

 (default is matched filter)

vtmatch implements a matched filter in which the input stream is continuously compared with a template

waveform. The output consists of the cross-correlation of the input signal with the template.

The argument to -t specifies the name of an ASCII data file which supplies the waveform of the template. The

file must contain a single column of numeric values in ASCII format representing time domain samples of the

template at the same sample rate as the input stream.

If -c is given, the programs outputs the convolution of the input stream with the template. A -F option can be

used to restrict the frequency range of the operation.

vtping

Meteor ping detection

 vtping [options] -d outdir input

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -X Use X display

 -D thresh Detection threshold (default 0.5)

 -R thresh Rejection threshold (default 0.5)

 -F detect,low,high Detection frequency range, Hz

 -F reject,low,high Rejection frequency range, Hz

 -t secs Trigger holdoff (default 0.4 seconds)

 -d outdir Place event files under outdir

 -s low,high Output spectrogram frequency range

 -ote Output unix epoch timestamp

 -oti Output ISO timestamps (default)

examples:

 # Monitor pings from two band 1 TV carriers at 55.25MHz

 vtrtlsdr -F 55.249e6 -r1000000 |

 vtresample -r8000 |

 vtmix -c1,-j | # Select upper sideband

 vtping -F detect,340,400 -F detect 1600,1700 -F reject,500,1500 -d /data/pings

vtping monitors the audio stream from a VHF receiver looking for impulses that resemble meteor pings.

Detected events are reported to standard output or, if a -d outdir option is given, each ping produces a set of

three files in outdir.

A -F detect option specifies a frequency range to examine. Genuine meteor pings occupy a small band around

the carrier frequency of the distant VHF transmitter. Interfering noise pulses have a much wider bandwidth and

can be ignored by using -F reject options to cover a suitable region of spectrum outside the ping band. For

example -F detect,900,1100 -F reject,300,800 -F reject,1200,3000 will look for pings between 900Hz and 1100Hz

and reject candidate pings if they spread into the surrounding reject regions. Multiple detect and reject bands

can be specified.

Thresholds for detection and rejection are given by -D and -R options, respectively.

vtping automatically equalises the spectrum based on a moving average input noise floor. Some input is

required to establish the noise floor and vtping will not detect events during the first 30 seconds of input, and

will take a minute or two to settle the equalisation. It is best therefore to run it on a continuous stream or long

duration batches.

When using -d outdir, each ping produces a thumbnail spectrogram, a short .vt file containing the audio data, a

data files containing the analytic signal of the ping, and a text file which reports the timestamp and detection

levels. Without -d outdir, events are reported to standard output, for example

 PING 2014-02-12_15:22:43.268 5.571 1.309

The numbers following the timestamp are the detection and rejection levels respectively, which are comparable

with the -D and -R threshold values. The timestamp may be switched between string and numeric formats using

-oti and -ote options.

vtping is responsive to short soft underdense pings and head echos exhibiting significant Doppler shift. It will

ignore long echos from overdense trails and it will ignore the distant carrier signal if present, and will ignore

aircraft reflections.

vtping can be used very effectively with the iqping timing method of vttime.

The analytic signal of each ping is recorded in a text file with a .td extension. The format of this file is as

follows:

 Column 1: Sample number, integer, zero based;

 Column 2: Timestamp;

 Column 3: Raw signal, full bandwidth;

 Column 4: I signal, bandlimited to the detection band;

 Column 5: Q signal, bandlimited to the detection band;

 Column 6: Instantaneous frequency, Hz;

 Column 7: Analytic magnitude;

The timestamp by default is in ISO string format. A -ote option produces numeric timestamps.

vtblank

Impulsive noise blanker

 vtblank [options] input output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -c Clip impulses at the threshold

 (default is to blank the output)

 -d secs Dwell time, seconds

 (default is 0.005 seconds)

 -h thresh Threshold amplitude

 -a factor Automatic threshold factor

 -t secs Time constant for moving average

 (default 100 seconds)

 -e chanspec Examine only these channels

 -b chansepc Apply blanking only to these channels

examples:

 # Apply a threshold of 12 times the mean, with zero dwell and 100 second

 # time constant. This is a reasonable nighttime setting when looking for

 # narrow band signals underneath VLF background.

 vtblank -a12 -d0 -t100

This program removes impulsive noise such as sferics and switching transients which exceed a given threshold,

and is intended for use when looking for weak continuous signals.

Impulses may be blanked (output set to zero) or clipped (output limited at the threshold). When the input signal

exceeds the threshold, the output is blanked or clipped for a retriggerable duration given by the -d dwell time

option. Without -d, only those samples exceeding the threshold are modified.

A -h option specifies the threshold amplitude. Usually it is better to use the -a option which sets the threshold

automatically to be the given factor higher than the exponential moving average noise floor of the signal. The

time constant of this moving average can be set by a -t option.

By default, if the threshold is exceeded on any channel, all the channels are blank or clipped. This is usually

desirable for further signal processing. A -e option can be used to restrict which channels are examined for

triggering of the blanker, and a -b option will specify which channels the blanking or clipping is applied to. This

can be useful to allow use of a wider bandwidth to detect the sferics while applying the blanking to a narrower

band signal. Options -e and -b expect a comma-separated list of channel numbers.

Note that, from version 0.8 onwards, the automatic blanking threshold set by -a has a different range of

thresholds.

 Storage and Retrieval

vtwrite

Write stream to disk files

 vtwrite [options] input datadir

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -G seconds Output file granularity (seconds)

 (default 86400 = 1 day)

examples:

The input stream is recorded into a set of disk files which are stored in the directory datadir. The format of the

files is identical to that of the stream, which means the data files can later be used directly as input to VT

modules.

Output files are named by their start time. For example, if datadir is /raw, an output file will have a name such

as /raw/110624-195425.

A new output file is started whenever the stream timestamp crosses a boundary specified by the -G file

granularity option. By default (86400 seconds), this starts a new file at midnight. A setting of -G 3600 will start a

new file on each hour.

A new file is also started if a timing break is detected on the input stream, or if the vtwrite program is stopped

and restarted.

vtwrite stores data in the file in the same format as that of the input stream. Therefore, if you want to store

samples in say i2 format, you must provide an input stream in i2 format, eg

 vtcat input -- -,i2 | vtwrite /raw/vt.

As mentioned above, the data files can be used directly as input to VT programs, or the vtread program can be

used to extract data, which allows specific time ranges to be read, seamlessly across multiple files.

vtread

Read a stream from disk files created by vtwrite

 vtread [options] datadir

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -T timespec Restrict records to a range of times. Default is all records

vtread is used to selectively extract stream data from a set of files produced by vtwrite. datadir specifies the

directory containing the file set. The program will scan the files in datadir to extract as much data as possible

within the time range given by -T timespec.

See Time specifiers for the description of timespec.

vtgen

Signal generator.

 vtgen -r rate [options] output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -r rate Specify sample rate (no default)

 -c chans Number of channels (default 1)

 -g gain Output gain (default 1.0)

 -T start,end Range of timestamps

 -t Throttle output rate to approximately real time

 -s a=amplitude,f=freq,p=phase

 Generate a cosine wave, amplitude specifies peak

 -n a=amplitude

 Generate normally distributed white noise, amplitude

 specifies mean

 -u a=amplitude

 Generate uniformly distributed white noise, amplitude

 specifies the peak

 -p a=amplitude,f=freq,p=phase,d=duty

 Generate rectangular pulses, amplitude specifies level

 -m a=amplitude,f=freq,p=phase,b=bitrate

 Generate an MSK signal

 -d v=level Generate DC level

 -a seed Seed the random number generator

 -i infile Specify input file for time source

examples:

 # Send an 18kHz sine wave out through the ALSA soundcard port hw:0,0 at

 # 48k samples/sec stereo

 vtgen -s a=0.5,f=18000 -r 48000 -c2 | vtraw -ow | aplay -

 # Simulate the MSK signal from NSY at 45.9kHz, using vtmix to produce

 # orthogonal loop signals with the MSK bearing 155 degrees.

 vtgen -r192000 -m a=0.1,f=45900,b=200,p=38.2 -t |

 vtmix -c -0.960 -c 0.423 | vtsid -c sid.conf

vtgen creates a stream containing a mix of signals, pulses, and noise. Multiple signal component options -s,-n,-p

can be given and the signals are mixed together into the output stream. The timestamp of the stream is taken

from the system clock unless a -T or -i option is given. Output is throttled to approximately real time rate if -t

is given, otherwise data is generated as fast as possible.

Amplitude options should be given in the range 0 to 1, frequency is specified in Hertz, duty cycle must be in the

range 0 to 1, phase is given in degrees.

The phase is an absolute phase taking account of the timestamp. Zero phase is at 1970-01-01 00:00:00.

MSK can be generated with a -m option, which is useful for testing vtsid. Set b= twice the value of the sid

monitor's br= setting.

vtfm

Frequency modulator/demodulator.

 vtfm [options] input output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -m Modulator

 -d Demodulator (default)

 -F hertz Specify carrier frequency (modulator only)

 -k index Modulation index, Hz per unit

examples:

 # Demodulate an FM sensor signal, carrier at 12kHz, 1kHz deviation produces

 # one unit output amplitude

 vtmult -f12000 @source |

 vtfilter -h lp,f=2000,poles=8 |

 vtfm -d -k1000 - @signal

This program extracts a signal which has been frequency modulated onto a carrier, for example with a voltage-

to-frequency convertor. It is intended for capture of low frequency sensor signals.

The input stream must carry pairs of baseband I/Q signals, one pair per sensor channel, and the input must be

band-limited to the width of the FM signal. This typically involves the use of vtmult followed by vtfilter.

The modulation index given by the -k option indicates the frequency deviation in Hertz required to produce an

output amplitude of 1 unit.

With -m and -F options, the program functions as a modulator. This is only useful for generating test signals.

With suitable allocation of the soundcard spectrum, several low frequency sensors can be mixed together, each

with its own carrier frequency, into a soundcard input channel.

vtfm can also be used on the output of vtrtlsdr to demodulate broadcast or communications FM signals.

vtam

Extract the magnitude of analytic signals.

usage: vtam [options] input output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -g gain Gain (default 1.0)

examples:

 # Combine a signal with its Hilbert transform to make an analytic signal,

 # then use vtam to extract the envelope

 vtmix -c1 -c-j @vlf | vtam | vtjoin @vlf - - | vtscope

vtam expects one or more pairs of I/Q input channels and outputs the magnitude of each pair. With N I/Q signals

there are 2N input channels and N output channels.

The program can be used to demodulate AM signals, eg from a RTL2832, after mixing down to baseband with

vtmult. It is most useful to extract the instantaneous amplitude of an analytic signal. See also Analytic signals

vttime

Refine the timestamp of a stream.

 vttime [options] input output

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -c chan Specify input channel containing timing signal

 -m method,params Specify timing method and parameters

 -h seconds Holdover limit (default none)

examples:

 # Re-time the signal in buffer @raw using the positive-going baseband PPS

 # signal on channel 2. The centroid of the PPS pulse occurs 250uS later than

 # the UT second.

 vttime -c2 -m centroid+,c=250e-6 @raw @output

 # Use a narrow (~10uS) PPS for timing

 vttime -c2 -m pulse+ @raw @output

 # Timing using the leading edge of a long (> 0.1 second) duration PPS.

 vttime -c2 -m edge+ @raw @output

 # Re-time the stream using the incoming stream timestamps.

 vttime -m none @raw @output

A new timestamp is assigned to the stream, and the stream is resampled to the exact sample rate. Output

samples are synchronous with UT, that is, there is a sample having a timestamp of the exact second and all the

other samples are at intervals of 1/sample_rate.

A timing signal is presented to the program on the input channel given by the -c option. The -m option selects

the timing method to use and indicates the expected form of the timing signal, as follows:

-m centroid+,w=width,c=offset

A baseband, positive-going, pulse per second, typically obtained from a GPS. For best results, the pulse

rise and fall times should be slowed using suitable RC networks, such that the transitions take place over

many (a few hundred) samples. This enables the pulse centroid to be located in time to a small fraction of

a sample period. Parameter c=offset specifies the offset in seconds between the centroid of the pulse and

the second mark. The width parameter can be used to fix the width of the measurement buffer. It is usually

best to leave this parameter out, in which case vttime will automatically choose a suitable width.

-m centroid-,w=width,c=offset

As above, but looks for a negative going pulse.

-m pulse+,c=offset

Measures the phase center of a short GPS pulse. The pulse duration should be between 0.5 and 2 sound

card sample periods. A duration of 10uS is typical. The offset param adjusts the timing with respect to the

phase center.

-m pulse+,c=offset

As above, but expects a negative going pulse.

-m edge+,c=offset

Measures the phase slope of the leading edge of a long duration GPS pulse. The pulse duration should be

between 0.1 and 0.5 seconds. The offset param adjusts the timing with respect to the leading edge.

-m iqping

Assumes the 2-channel input represents an I/Q stream and locks on to an RF timing pulse.

-m none

Does not measure a timing pulse. It just resamples the stream to an exact rate relying on the timestamps

of the input stream.

With a good quality low noise PPS, the timing jitter should be below 50nS and it is often possible to achieve

better than 30nS.

Limited use is made of the timestamp of the input stream. It is used only to get a rough estimate of when to

expect the next timing pulse and should be accurate to better than 0.5 seconds otherwise the second will be

ambiguous.

For advice on how to use vttime, see Timestamps and alignment

For an example of the iqping timing method, see http://abelian.org/meteor.

vtresample

Change the sample rate of a stream.

 vtresample -r rate [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

http://abelian.org/meteor

 -r rate Convert to this sample rate

 -q qual Conversion quality:

 qual = 0 fastest (default)

 = 1 medium

 = 2 best

 -g gain Gain factor (default 1.0)

examples:

The input stream is converted to the new sample rate specified by the mandatory -r rate option. rate must be

an integer, but can have any ratio to the input sample rate.

The program will not run with a sample rate ratio more than about 250 in either direction and will terminate

with 'src_process error'. In that situation, perform the conversion in two stages.

 Input/Output Programs

vtcard

Initialise and read data from a soundcard.

 vtcard [options] [outstream]

options:

 -d device Specify the OSS or ALSA device to use

 (default /dev/dsp or hw:0,0)

 Use -d- to read standard input

 Use -dq to list bus devices (ALSA only)

 -c chans Number of channels to read (default 2)

 -b bits Bits per sample (default 16)

 -r rate Sample rate (no default, mandatory option)

 -g gain Output gain (default 1.0)

 -u Disable sample rate tracking

 -v Increase verbosity

 -B Detach from terminal and process group to become

 a daemon program

 -T stamp Apply a dummy timestamp when reading stdin

 -A opts Specify buffering options,

 -A b=buffer_size,p=period_size

 sizes in bytes, either or both b= or p= can be given

 If not specified, reasonable defaults are used

 -L name Specify logfile

examples:

 # Simple test using the default soundcard in stereo

 vtcard -vv -r48000 @test

 vtstat @test

 # Read /dev/dsp2 at 192k/sec 4 byte samples, 2 channels, into

 # a lock-free buffer called dsp2raw. The buffer is made 30 seconds

 # long and uses 4 byte integer values.

 vtcard -r 192000 -d /dev/dsp2 -b32 @dsp2raw,30,i4

 # Read ALSA soundcard, specifying a large buffer size suitable for 192k/s

 # Run in background, output to buffer called @hew

 vtcard -Bvv -A b=262144,p=2048 -d hw:1,0 -b32 -r 192000 @hew,20,i4

 # Use the USB device in port 3 of hub attached to port 5 of host

 # controller #2. (ALSA only)

 vtcard -d usb:2-5.3 -c2 -r48000 @raw

 # Use the PCI device in slot 4 of PCI bus 05 (ALSA only)

 vtcard -d pci:0000:05:04 -c2 -r48000 @raw

This program initialises the soundcard for input and reads data into the specified output stream. It is strongly

recommended to use a lock-free buffer as the output stream in order to prevent soundcard overruns.

If vtcard is run with superuser permissions, it will assign itself a real-time priority and will lock itself and its

output buffer into memory. Under these conditions vtcard will only block while waiting for soundcard data and

soundcard overruns are extremely unlikely.

It may take a minute or two before vtcard starts to write data to its output stream. During this time it makes an

initial measurement of the soundcard's sample rate. After this, vtcard continues to monitor the sample rate

(against the system clock) and includes this calibration information in its output stream.

The data is timestamped using the system clock, after correcting for the latency reported by the driver. If a

soundcard overrun does occur, vtcard initiates a reset of the card and there will be a break in the output stream

while the sample rate and timestamp are re-evaluated.

If the card cannot run at the requested sample rate, vtcard will use the closest available rate.

If the option -d- is given, vtcard will read raw PCM samples from its standard input. In this mode, an initial

timestamp is taken from the system clock, and thereafter the sample rate is assumed to be exact. A -T option

can be given to supply an alternative start time.

The program will choose a suitable period or fragment size and buffer length. These can be overriden with a -A

option.

Option -dq will output a list of available sound devices along with their USB or PCI bus address. A bus address

(for example usb:1-7.2 or pci:0000:00:05) can be given to the -d option to unambiguously specify which

soundcard is required, based on the physical port that the device is plugged into. This avoids problems caused

by ALSA's random assignment of card numbers. Currently this function does not work with OSS.

For further information, see Soundcards

vtvorbis

Encode to, or decode from, ogg/vorbis and multiplex the timestamp data as a second logical stream within the

ogg container.

 vtvorbis [options] [-e|-d] name

options:

 -v Increase verbosity

 -e Encode

 -d Decode

 -B Run in background

 -L name Specify logfile

 -p Expect/generate only a pure ogg/vorbis stream

 (default is to multiplex with a timestamp stream)

 encoding options:

 -q factor Specify VBR encoding with this quality factor

 factor range -0.1 to 1.0

 -b kbps Specify CBR encoding at this kbps per channel

 (default is CBR, 64kbps per channel)

 -i Independent encoding of each channel

 decoding options:

 -E secs Decode only specified number of seconds, then exit.

 network options:

 -u method,server,port,mount,passwd

 Uplink to icecast server

 -n server,port Send over network, without protocol, to port on server

 -n port Listen on port, without protocol

 -k Retry failed uplink connections

 (default is to exit if connection drops)

 -t Throttle uplink to sample rate

 (default is to encode and uplink as fast as possible)

examples:

 # Send data from @test to a buffer with the same name on host xyz

 vtvorbis -eq0.5 @test | ssh -c blowfish xyz vtvorbis -d @test

 # Filter and stream channel 1 of the raw VLF signal in buffer @eraw,

 # as pure ogg/vorbis to Icecast server

 vtfilter -a th=7 -h hp,f=500,poles=2 -h lp,f=10000,poles=2 -g4 @eraw:1 |

 vtresample -r 32000 |

 vtvorbis -ep -q0.4 -ktu shout,46.4.26.83,80,/vlf1,xxxxx

 # Downlink ogg/vorbis from a stream server. Let wget make the http

 # connection as it knows all about proxies, authentication, etc,

 # and use aplay to listen to it.

 wget -q -O- http://46.4.26.83/vlf1 2> /dev/null |

 vtvorbis -dp | vtraw -ow | aplay -

 # Send vorbis stream to server abelian.org port 1234

 vtvorbis -ei -q0.4 -kn abelian.org,1234 @source

 # Listen on port 1234 for incoming vorbis connection

 vtvorbis -d -kn 1234 @destination

By default, vtvorbis -e multiplexes the timestamp and sample rate calibration as a second stream within the

ogg container. This allows the receiving vtvorbis -d to reconstruct the VT stream, preserving timestamps across

the link. Media players and other decoders are supposed to ignore any unrecognised streams in the container,

but some don't and therefore when sending to a decoder other than vtvorbis, a -p option may be a necessary

encoder option.

The -E option is useful in scripts which sample a stream and need to capture a specific length of data for

analysis. The output will be approximately the requested number of seconds in length - output is stopped at the

end of the vorbis page following the specified end point.

A -i option forces independent encoding of the channels. The default is to allow the vorbis encoding to exploit

the redundancy between channels, which is usually desirable for efficient encoding of stereo but introduces

spurious correlation of background noise and weak signals between channels. Therefore, when encoding

independent streams, a -i option is necessary to avoid this problem.

-n server,port can be used with -e to send encoded data to a remote server. The server should use -d -n port to

listen for the incoming connection. The connection has no connection or wrapping protocol and is equivalent to

piping the vorbis stream through a netcat connection.

When uplinking over a WAN, a -k option is recommended. This will ensure that a dropped connection is retried

until eventually reestablished. vtvorbis -ek will retry a failed connection every 20 seconds. While the link is

down, encoded data will be discarded so that the upstream processing pipeline is not choked. Without -k, the

encoder will exit if the uplink fails. -k can be used with both -u for protocol connections, and with -n for simple

connections.

Recommended mode of operation is VBR with a quality factor of 0.3 or 0.4 for a single channel of 32k

samples/sec.

LAN network connections can use the netcat (nc) program to good effect when the hosts involved are safely

behind a firewall. For WAN connections, ssh is usually necessary for connections between vtvorbis. In this case,

use blowfish encryption as this is the most efficient.

vtvorbis will do sample rates 1k/sec to 200k/sec when using variable bit rate encoding (-q option). With

constant bit rate (-b option) the range is 15k/sec to 50k/sec.

vtflac

Lossless compression/decompression using FLAC, preserving timestamps.

 vtflac [-e|-d] [stream]

options:

 -v Increase verbosity

 -e Encode

 -d Decode

 -B Run in background

 -L name Specify logfile

examples:

 # Archive an i2 format stream file

 vtflac -e /raw/111225-000000 > /arc/111225-000000.fx

 # Unarchive the same file

 vtflac -d /raw/111225-000000,i2 < /arc/111225-000000.fx

vtflac -e applies loss-less compression to the stream data using FLAC and multiplexes the compressed audio

with the timestamp information. The result is a file which is readable only by vtflac -d.

Audio data is converted to 16 bit (i2) resolution by the encoder, and if the original file is i2 or lower resolution,

the decoded samples are recovered exactly.

If no input or output buffer or filename is given, stdin and stdout are assumed and the program operates in a

pipeline.

The files produced by vtflac -e will not be playable by a FLAC player because of the multiplexed timestamp

data. This program is intended for archival of stream files but can also be used to transfer streams across a

network connection if bandwidth is at a premium. The FLAC encoder is set to run at the maximum compression

available and a file of VLF data is typically reduced to about 50% of the original (i2 format) file size.

vtain

Read A/D converters on Beaglebone

 vtain -r rate -c mask [options] [outstream]

options:

 -c mask Bit mask 0..255 specifying which A/D channels to read

 -r rate Sample rate (no default, mandatory option)

 -g gain Output gain (default 1.0)

 -z offset Input offset 0..4095 (default 0)

 -v Increase verbosity.

 -B Detach from terminal and process group to become

 a daemon program

 -L name Specify logfile

examples:

 # Read AIN1 at 200 samples/second, scaling the A/D range of 0..4095

 # to output range -1 .. +1

 vtain -c1 -r200 -z2048 -g2 @output

 # Read all 8 A/D converters at 20 samples/second

 vtain -c255 -r20 @output

This program reads samples from the A/D convertor nodes in the directory /sys/devices/platform/omap/tsc. Up

to 8 channels can be read, specified by the bit mask argument to the -c option.

By the default, the 0..4095 range of the A/D is mapped to 0..+1 in the channel data.

vtdata

Read data from ASCII source

 vtdata -r rate -c chans [options] [outstream]

options:

 -c chans Number of channels in input file (no default)

 -r rate Sample rate (no default, mandatory option)

 -g gain Output gain (default 1.0)

 -v Increase verbosity.

 -B Detach from terminal and process group to become

 a daemon program

 -L name Specify logfile

 -T timespec Start time to assign to data

 -i Timestamp in input column 1

 -t Throttle data flow to real time rate

examples:

 # Read two channels from a two-column text file

 vtdata -c2 -r32000 -g2 @output < source.txt

This program reads data from a flat ASCII text data file and converts it into a timestamped stream. Maximum

input record width is 4096 characters. Input fields are white space separated and leading white space is

ignored. A hash or semicolon in the input file is treated as a comment and causes the rest of the line to be

ignored. Blank input lines are ignored.

The data is timestamped by the current time at the start of the program unless a start time is specified by a -T

option. If -i is given, vtdata will expect a timestamp in column 1 of the input file and if no -T option is given, the

column 1 timestamp will be used. If both -i and -T are given, the command line timestamp will be used and the

input file timestamp will be ignored.

Program vtraw -oa can be used with vtdata -i to pipe stream data through some arbitrary signal processing

script.

vtwavex

Extract data from WAV file

 vtwavex [options] [input [output]]

options

 -v Increase verbosity.

 -B Detach from terminal and process group to become

 a daemon program

 -L name Specify logfile

 -T timespec Start time to assign to data

 -r rate Override sample rate in WAV file

examples:

 # Extract signal, defaulting to current start time

 vtwavex source.wav > source.vt

 # Extract signal assigning a specific start time

 vtwavex -T 2017-12-01_15:31 source.wav > source.vt

 # Extract a 2-channel I/Q signal for decoding by EbNaut

 vtwavex source.wav | vtraw -oa | ebnaut -d ...

Signal is extracted from the WAV file and output as a timestamped stream. If the WAV header contains an 'inf1'

chunk supplied by Spectrum Lab, the start time of the stream will be set to the 'ut' field of the inf1 chunk.

Otherwise the current RTC is used as the start time unless overridden with a -T option. The sample rate is taken

by default from the WAV header. If 'inf1' is present and contains a sample rate, this is used instead. Both may

be overridden with a -r option.

The WAV file may contain any number of channels. Only uncompressed formats are supported.

vtrtlsdr

Take data from RTL2832U dongle.

 vtrtlsdr [options] buffer_name

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify log file

 -d device Device number (default 0)

 -d ? List available devices

 -r rate Sample rate 1000000 to 3200000

 -F hertz Tuner frequency, Hertz

 -g gain Tuner gain (dB, default 0 = auto)

 -g ? List available gain settings

 -q Invert the Q signal

 -u No sample rate tracking

 -T stamp Start time when using -u

 (default is to use system clock)

examples:

 # Play FM broadcast station at 102.7Mhz

 vtrtlsdr -u -F 102.7e6 -r 1000000 |

 vtresample -r200000 |

 vtfm -k1e5 | vtresample -r48000 |

 vtraw -ow | aplay -

 # Record meteor pings in upper sideband at 55.25Mhz, into 1 hour files

 vtrtlsdr -F 55.249e6 -r1000000 |

 vtresample -r8000 | vtmix -c1,-j -- - -,i2 |

 vtwrite -G3600 /data/meteor

This program uses librtlsdr to retrieve raw I/Q data from the tuner dongle. -F specifies the center frequency in

Hz and bandwidth is determined by the selected sample rate.

Output is a 2-channel stream with channel 1 carrying the I signal and channel 2 carrying Q.

vtrtlsdr may take a minute or so to measure the sample rate of the device before it starts to deliver data to the

output stream. This function is turned off with a -u option.

Allowed sample rates are 1e6 to 3.2e6 samples/second.

To include vtrtlsdr you must configure with --with-rtlsdr and install some prerequisite libraries. For more info

see RTL2832U

vtsdriq

Take data from SDR-IQ receiver.

 vtsdriq [options] buffer_name

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify log file

 -d device Device node (default /dev/ttyUSB0)

 -r rate Sample rate (default 196078)

 Rate must be one of

 8138, 16276, 37793, 55556

 111111, 158730, 196078

 -F hertz Frequency, Hertz

 -g gain RF gain in dB (default 10)

 Valid range -8 to +34

 -a Insert -10dB attenuator

 -i IF gain in dB (default 0)

 Allowed values 0, 6, 12, 18, 24

 -q Invert the Q signal

 -u No sample rate tracking

 -T stamp Start time when using -u

 (default is to use system clock)

examples:

 # Receive upper sideband 14.0 to 14.0277 Mhz without tracking the

 # sample rate and display the spectrum

 vtsdriq -F14e6 -r55556 -g10 -i0 -q -u |

 vtmix -c1,-j | vtspec

 # Receive a single channel streamm of baseband VLF with sample rate

 # tracking

 vtsdriq -F0 -r55556 -g10 -i0 @vlf,i2

This program initialises and reads data from an SDR-IQ receiver connected via USB. -F specifies the center

frequency in Hz and bandwidth is determined by the selected sample rate.

vtsdriq may take a minute or so to measure the sample rate of the device before it starts to deliver data to the

output stream. This function is turned off with a -u option.

If the frequency given by -F is non-zero, the output is a two channel I/Q stream with channel 1 carrying the I

signal and channel 2 carrying the Q signal. If a frequency of zero Hertz is selected, the output is just a single

channel of real data.

To include vtsdriq you must configure with --with-sdriq.

vtraw

Extract audio from a stream.

 vtraw [options] [stream]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -g factor Overall gain factor (default 1.0)

 -ob 16 bit raw interleaved PCM output (default)

 -oa Produce ASCII output

 -ow WAV output containing 16 bit PCM

examples:

 # Produce a WAV file from a whistler event file

 vtraw -ow 1325151287.vt > 1325151287.wav

 # Play a stream in real time

 vtraw -ow @signal | aplay -

 # Extract a short piece of signal for analysis

 vtread -T2010-09-15_12:31:02.47,+0.02 /raw | vtraw -oa > sferic.dat

vtraw outputs the audio content of its input stream, by default in raw 16 bit PCM with interleaved samples. With

a -oa option, multi-column ASCII output is produced with the timestamp in column 1 and the audio channels in

the remaining columns.

WAV output format is produced with the -ow option.

The signal level can be altered using a multiplicative gain factor via the -g option, but you'll need to avoid

clipping when using the 16 bit binary and WAV outputs.

 Display and Plotting Programs

Programs for displaying signals and producing graphs.

vtstat

Report statistics

 vtstat [options] input

options:

 -E secs Examine only specified number of seconds, then exit.

 -h hspec Produce a histogram. hspec has the form

 max=max,bin=bins

 -a aspec Report amplitude statistics. aspec has the form

 r=secs

 r= specifies output record interval in seconds

 -i Report summary statistics

Without options, vtstat uses the terminal to display some stream statistics in real time.

A histogram is generated if -h hspec is given. bins specifies the number of amplitude bins, max gives the max

sample amplitude.

The -a option extracts the first three moments of the rectified input signal, averaged over a period given by the

r= parameter. If r=0 is given, a single output record is produced for the entire input stream. The -a option allows

amplitude probability distributions to be measured using standard metrics such as Vd or parameterisation by

Gaussian, Rayleigh or Weibull distributions.

Option -i produces summary statistics to stdout.

vtscope

An oscilloscope to display a stream in the time domain.

 vtscope [options] input

options:

 -v Increase verbosity

 -display display Specify the X host and display number

 (By default, the DISPLAY environment variable is used)

examples:

 # Display the signal passing through buffer @raw

 vtscope -v @raw

 # Merge the signals in buffers @raw1 and @raw2 and display them all

 vtjoin @raw1 @raw2 - | vtscope -v

 # Display just channels 1 and 3 in @raw

 vtscope -v @raw:1,3

This program uses the X display to make an oscilloscope and control panel.

Most of the controls should be obvious. Clicking the mouse on the display will report the timestamp and

amplitude of the point clicked. Drag the display left or right to scroll through the capture buffer, or use the

scroll bar. Button 'Arm' puts the scope into single shot mode, 'Run' sets continuous mode. If neither of these is

pressed, the scope retains the captured buffer for analysis.

The display can be resized just by dragging a corner of the window.

One of the channels, or UT, can be selected as a trigger source. If UT is selected the scope triggers on the UT

second mark - this is useful for examining timing pulses. A fixed pre-trigger period of 50mS is used, ie the

trigger point will be at 50mS on the time axis.

The 'Plot' button puts the current waveforms into an interactive gnuplot. Press 'q' in the gnuplot window to

dismiss. 'Save' stores the data into a file in ASCII format with space separated fields. The first column is the

absolute timestamp, second column is the time offset into the capture buffer, and the remaining columns are

the channel amplitudes.

vtspec

A spectrum analyser

 vtspec [options] [input]

examples:

This program uses the X display to make a spectrum analyser and control panel. If an input stream is not given,

stdin is assumed.

The display can be scrolled and shifted by dragging with the mouse or by working the scroll bar and

thumbwheels. Drag a corner to resize. A selection of window functions is available. Use 'Rect' for accurate peak

level measurements but some of the others, eg 'Nuttall' or 'Blackman' have much lower scalloping effects but

introduce amplitude errors that vtscope doesn't correct for.

The 'Plot' button puts the spectrum data into an interactive gnuplot. Press 'q' in the gnuplot window to dismiss.

'Save' stores the data to an ASCII text file with space separated fields. The first column is the frequency and the

remaining columns are the bin amplitudes for each channel. Phase information is not stored.

vtcmp

Compare two channels in various ways.

 vtcmp -m mode [options] input

options:

 -S secs Skip seconds of input before starting

 -E secs End after accepting seconds of input

 -m type Type of comparison. type is one of

 cor Cross correlation (default)

 pd180 Phase difference, mod 180

 pd360 Phase difference, mod 360

 -F freqspec

 -w seconds Half-width over which comparison is made

 -N count Average this number of input buffers

 -r Envelope correlation

examples:

 # Outputs the correlation coefficient between channels 3 and 4

 # of the input stream, up to a range of +/- 10mS.

 vtcmp -m cor -w 0.01 source:3,4 > datafile

 # Produce an envelope correlation, smoothing the envelope by

 # ignoring components above 500Hz.

 vtcmp -m cor -w 0.01 -r -F,500 source:1,2

This program makes various types of comparison between two input channels, and writes the results to stdout.

Output is multi-column plain ASCII. Exactly two input channels must be specified. -S and -E options can be used

to limit the time range of the input signal to be analysed. If not given, the program continues to the end of

input. The program averages the comparison in units of time given by the -w option.

With -m cor the cross correlation is averaged over the duration of the input signal. The range of time offsets to

be reported is given by the -w argument.

Option -F freqspec can be used to restrict the frequency to be examined. freqspec takes the form start,end

where start and end are frequencies in Hertz. Either can be omitted and start defaults to zero and end defaults

to the Nyquist frequency.

A -r option causes both input channels to be rectified by squaring and the resulting 'power' signals are

presented to the cross-correlation. A -F option should be used to low-pass filter the envelope as in the example

above.

vtnspec

A narrow band spectrum analyser.

 vtnspec [options] input

options:

 -B Run in background

 -L logfile Specify logfile

 -v Increase verbosity

 -N frames Average up to this many transform frames, then exit

 -c Coherent averaging of frames until end of input

 -a Non-coherent averaging of frames until end of input

 -f hertz Center frequency

 -w width Frequency width in Hertz

 -r resolution Frequency resolution - bin width in Hertz

 -p Pad with zeros across timing breaks

 -W window Specify window function:

 rect (default), cosine, blackman, hamming,

 nuttall, hann

examples:

 # Check sample rate accuracy against RSDN-20 on 11.9kHz using a 10uHz

 # bin size, using a sferic blanker to improve S/N ratio

 vtblank -a12 -d0 input |

 vtnspec -cv -f 11904.7619 -w 0.02 -r 0.00001 > data.txt

This program analyses its input signal in the frequency domain using an array of Goertzel filters. It is especially

suited to examining a narrow piece of spectrum or to implement overlapping bins.

The frequency range specified by the -f and -w options is spanned by Goertzel filter bins separated by the

resolution given with the -r argument. -f specifies the center frequency and the program always uses an odd

number of bins so that there is always a bin positioned at the center frequency. If a width of zero is specified, a

single bin will be transformed, positioned at the center frequency. A transform is completed after 1/resolution

seconds. By default, the program will issue an output and exit after one transform is completed.

If -a or -c is given, vtnspec will average successive transform outputs non-coherently or coherently, respectively,

until end of input, or until the number of frames given by a -N option have been processed.

Output is multi-column space separated ASCII, one row for each bin, with the following format:

 ...

 1000.00000000 9.269461e-05 1.213293e-05 6.610408e-05 -1.023862e-05 ...

 | | | | |

 bin frequency ch1_real ch1_imag ch1_rms ch2_real ...

If -a has been given to specify non-coherent averaging, the output contains just the RMS column for each

channel:

 ...

 1000.00000000 2.330445e-05 1.539060e-05 ...

 | | |

 bin frequency ch1_rms ch2_rms ...

vtnspec is typically used with up to a few hundred bins. If more than 1000 or so bins are used, the program will

become very slow and it may be quicker to use vtwspec.

vtwspec

A wideband spectrum analyser.

 vtwspec [options] input

options:

 -B Run in background

 -L name Specify logfile

 -r hertz Resolution (bin width)

 -a Non-coherent averaging until end of input

 -N frames Average up to this many transform frames, then exit

 -W window Specify window function:

 rect (default), cosine, blackman, hamming,

 nuttall, hann

examples:

 # Average 60 seconds of source in 1Hz resolution

 vtcat -E60 source | vtwspec -a -r1 > datafile

All channels of the input stream are transformed to the frequency domain using a FFT and the resulting

spectrum is sent to the stdout. Unless the -a option is given, the program does a single transform of length

sample_rate/resolution and then exits. If -a is given, the program performs successive FFTs until the input stream

ends, averaging the signal power in each bin. A -N option can be given to tell vtwspec to end the averaging and

terminate after the given number of FFT frames.

The transform output is sent to stdout in ASCII format with one row per frequency bin. The first column is the

bin frequency in Hz. Without -a there are three further columns for each channel: real amplitude, imaginary

amplitude, and the RMS magnitude. With -a, there is a single column per channel: the RMS magnitude.

vtpolar

Polar A/V display of orthogonal signals.

 vtpolar [options] [input [output]]

options:

 -v Increase verbosity

 -B Run in background

 -L name Specify logfile

 -s size Display diameter, pixels (default 224)

 -r rate Frame rate (default 10)

 -m mode Display mode (default tf)

 -mf spectrogram

 -mt time domain (vectorscope)

 -mtf both

 -am Mono audio (default)

 -as Stereo audio

 -b size Buffer size before ffmpeg (default 10)

 -k from,to Frequency range, Hz (default DC to Nyquist)

 -p polarspec Specify alignment of input channels

 -c Paint background

 -ga=gain Audio gain (default a=1.0)

 -gv=gain Video gain (default v=1.0)

 -f options Options passed to ffmpeg

 options is a comma separated list of parameters:

 format=container_format, (default avi)

 vcodec=video_codec, (default mpeg4)

 acodec=audio_codec, (default libmp3lame)

 vbr=video_bitrate, (default 100)

 abr=audio_bitrate, (default 64)

examples:

 # Pipe mpeg A/V stream to mplayer

 vtpolar -f format=mpegts,vbr=1000,abr=128 -s400 -p96,6 @hloops | mplayer -cache 1024 -

 # Produce an avi file from 1 hour of signal extracted from saved data

 vtread -T2010-10-15_05:00,+3600 /data | vtpolar -s360 -r10 - file.avi

 # Send an A/V stream to ffserver. The ffserver config specifies the

 # bitrates, container and codecs. We specify the size and frame rate.

 vtpolar -s400 -r12 @hloops http://server/stream.ffm

This program takes a 2-channel stream from a pair of loops, or 3-channels consisting of 2 loops and an E-field

signal, and produces a polar display of frequency and bearing and/or amplitude and bearing. Bearings are

extracted mod 360 if an E-field channel is available, otherwise they are mod 180.

The display video is multiplexed with the audio stream and encoded using ffmpeg. output is a pipe, filename, or

the uplink URL to an ffserver. Use ffmpeg -formats to get a list of available container formats and codecs. Some

container formats, such as swf will only accept certain audio sample rates, in which case use vtresample before

vtpolar.

The -p polarspec option indicates the assignment and alignment of each of the input channels. For example -p

354,93,E would indicate a three channel input with channel 1 from a loop oriented on 354 degrees, channel 2

oriented 93 degrees, and channel 3 is an E-field channel. For good results it is essential to equalise the phase

response of the receivers involved. The loop signals do not have to be orthogonal.

A 10 second buffer is maintained between vtpolar and ffmpeg. The size may be changed with the -b seconds

option but if the buffer is too small a deadlock will occur and vtpolar will go into a busy loop.

By default the accompanying audio is mono. If two inputs are provided, the mono audio is the sum of both

channels. If there are three inputs the mono audio is taken from the E-field channel. Option -as switches to

stereo audio derived from the two H-field channels.

At present, the http uplink option seems to be broken due to a problem with ffmpeg or ffserver.

vtplot

Time domain plotting

 vtplot [options] [input] > imagefile

options:

 -s x,y Plot size in pixels, default 640,480

 -t title Title for the plot

 -o format Specify output image format

examples:

 # Show available output image file formats

 vtplot -o?

 # Plot 15mS of data extracted from a signal database

 vtread -T2011-04-12_03:27.7246,+15e-3 /datadir |

 vtplot -s 1200,600 -t "Nice multimode tweek" -o x11

 # Plot 30mS from the real-time data in @source

 vtcat -E0.03 @source | vtplot -t "Live snapshot" -o 'png small' > live.png

vtplot is a shell script which uses vtraw -oa to convert the input stream to ASCII data and then invokes gnuplot to

do the plotting.

If no -o option is given, vtplot will display the time domain waveform on the X display. Enter 'q' into the

persistent display window to remove it.

vtsidex

Extract records from the data files produced by vtsid.

 vtsidex [options] datadir

options:

 -v Increase verbosity

 -d datadir Specify data file root directory, no default

 -m monitor Specify a monitor. Defaults to spectrum data.

 -o format Specify output format options, see below

 -T timespec Restrict records to a range of times. Default is all records

 -F freqspec Restrict spectrum columns to a range of frequencies. Default is

 all frequencies.

 -f filename Specify a particular file name

 -s Report status

 -a n Average over n raw records

 -h degrees Apply hysteresis to angle values

 -t Tail the data

Selected records are extracted from the vtsid data files under the directory given by the datadir. If a -m option is

given, the monitor's records are extracted, otherwise spectrum data is extracted.

Option -T timespec delimits the time range to be extracted. See Time specifiers for a description of timespec.

When extracting spectrum data, option -F freqspec can be used to restrict the frequency range extracted.

freqspec takes the form start,end where start and end are frequencies in Hertz. Either can be omitted and start

defaults to zero and end defaults to the Nyquist frequency.

Output options are introduced by -o flags. These are:

 -ote Timestamps in unix epoch, seconds since 1970-01-01 00:00:00

 -oti Timestamps in format YYYY-MM-DD_HH:MM:SS.SSSS (default)

 -otr Timestamps in seconds offset from the start time

 -oh Output a heading record at the start of data

 -ohn Issue a heading record every 'n' data records

 -otb Output a blank line when there is a timing gap in the data

The -otb option is useful when piping the data into gnuplot, causing the timing break to be represented by a

gap in the chart.

A summary of a data file is produced by the -s option. A filename may be given, in the form YYMMDD-HHMMSS,

otherwise the current data file is reported. The -m option specifies which monitor is referred to.

Records are averaged if -a n is given. An output record is generated after every n raw records. The timestamp

assigned is the timestamp of the first raw record of the average. If a timing break occurs in the input stream, a

new average is started. Bearings and phase angles are averaged correctly, modulo 180 or 360 according to the

type of raw data field.

To avoid too much wrapping of phase and bearing measurements, a hysteresis can be applied with -h degrees.

This is useful for plotting noisy angles that slowly move through the wrapping angle. For example -h20 will allow

a 0-360 degree bearing to range from -20 to 380 degrees, and a -180 to +180 phase angle will use the range

-200 to +200. This option can also be used with a large hysteresis, eg -h5000 to completely unwrap long phase

changes, such as occur during the day/night transitions during which the signal phase can change by several

complete cycles.

vtsidplot

Plot data from vtsid monitor data

 vtsidplot -m monitor -T timespec [options] datadir [> imagefile]

options:

 -m monitor Specify a monitor

 -T timespec Time range

 -s x,y Plot size in pixels, default 640,480

 -t title Title for the spectrogram

 -a count Average over count raw records

 -h degrees Apply degrees of hysteresis to phases and bearing

 -f fields Specify fields to be plotted (default all)

 Use -f? to show available fields

 -o format Specify output image format (default x11)

 vtsidplot -o? for available formats

examples:

 # List the available fields for monitor NAA

 vtsidplot -m NAA -T2011-03-18 -f? /raw/sid

 # Plot carrier phase and bearing for a whole day, into a png file

 vtsidplot -m NAA -T2011-03-18,+86400 -f 'cp1 b360' -o 'png small' /raw/sid > out.png

This is a script which invokes vtsidex to extract the requested data and runs gnuplot to do the plotting. The

options -m, -T, -a, -h and the database directory are passed down to vtsidex. See the description of vtsidex for

their usage.

If -f fields is given then only the requested fields are plotted. The fields argument is a comma separated, or a

quoted space separated, list of fields. A -f? option will report the available fields and a -T option must be given

with this because the available fields may depend on the configuration of vtsid at that time.

Due to a limitation of gnuplot, this utility is only useful when the monitor logging interval is greater than one

second. If not, then vtsidplot may still be used if a -a count option is given such that the interval between

averaged records is greater than one second.

vtsidgram

Plot spectrograms from vtsid spectrum data

 vtsidgram [options] datadir [> imagefile]

options:

 -s x,y Plot size in pixels, default 640,480

 -t title Title for the plot

 -o format Specify output image format

 -T timespec Specify time range

 -F freqspec Specify frequency range

examples:

 # Produce output in png format and display with 'xv'

 vtsidgram -T2011-10-17_10:30,+3600 -F12500,14500 -o 'png small' -s320,480 /raw/sid | xv -

This is a script which runs vtsidex to extract spectrum data and passes it to gnuplot to render in pm3d mode. The

-T timespec and -F freqspec options are passed on to vtsidex and are described above. With no -o option, the x11

display is used, otherwise an image file is sent to stdout.

vtsidgram selects the amplitude fields from the output of vtsidex and if there is more than one amplitude field

(multiple channels), the RMS sum of the amplitudes is used.

vtsgram

Plot spectrogram

 vtsgram [options] [input] > imagefile

options:

 -t title Title for the plot

 -p pps Horizonal pixels per second (default 100)

 -s 'opts' Extra options passed to Sox

 -b bins Number of frequency bins (variable default)

examples:

 # Plot 3 seconds of the source, at 200 pixels per second

 vtcat -E3 @source | vtsgram -p 200 > file.png

 # Plot the signal file with intensity range -20 dB to -70 dB

 vtsgram -s '-Z-20 -z50' signal.vt | display

vtsgram is a shell script which invokes the Sox utility to produce a spectrogram in png format. Sox will choose

the number of frequency bins to use unless you supply a -b bins option. By default, the title text of the plot will

be the timestamp of the start of the plot. Alternatively the title can be specified with a -t option.

A -s option passes its argument to Sox which enables detailed control over the plot. The Sox options should be

quoted to contain them in a single argument to -s. Some of the Sox options are listed below:

 -Z dB Set the signal amplitude corresponding to full intensity

 -z dB Set the dynamic range of the plot

 -m Monochrome palette

 -l Use colours more suitable for printing

 -r Turn of axes and legends

See the spectrogram section of the Sox man page for more details and options.

For more information about vtsgram, see Spectrogram plots

 Utility Programs

A selection of programs useful for monitoring the signal processing modules.

vtps

Display all VT processes.

 vtps [options] [modes]

options:

 -f Full format

 -F Extra full format

 -l Long format

 -o format Custom format options

modes:

 u Show memory and cpu used

 v Show virtual memory

 w Wide listing

This program is just a front-end for the ps utility, which is run for every VT process on the host. The options and

mode letters on the vtps command line are just passed on to ps. See the ps man page for more options.

If no options are given, ps is run with the options -o pid,rtprio:2=RT,pcpu,pmem,command.

vttop

Active display of VT processes.

 vttop [options]

options:

 -b Run in batch mode (useful for scripting)

 -d ss.tt Delay between updates, seconds.tenths

This program is a front-end for the top utility, running top for all VT processes on the host. Options are just

passed straight on to top. See the top man page for more options and interactive commands.

vtwait

Wait for data on a stream

 vtwait [options] input

options:

 -v Increase verbosity

 -t Wait for data on the stream

 (Default is to wait for buffer creation

examples:

 # Run vtcard to read the soundcard into buffer @raw

 vtcard -B -d hw:0,0 -r 48000 @raw,20,i2

 # Wait for @raw to be ready

 echo "waiting for @raw..."

 vtwait -t @raw || {

 echo "buffer @raw invalid" >&2

 exit 1

 }

 # Start programs which use @raw for input

 vtfilter ... @raw -

 vtwrite ... @raw

This program is intended for use in start-up scripts in which vtcard or vtvorbis is used in background to run data

into a lock-free buffer. The program waits for the buffer to be created, and if -t is given, it continues to wait

until data is available.

Without this program, the start-up script would proceed to launch subsequent processing modules which may

fail immediately because their input buffer does not yet exist.

vtcardplot

Plot soundcard performance

 vtcardplot [options] vtcard_logfile [> imagefile]

options:

 -d date Plot only the specified day, yyyy-mm-dd (default whole logfile)

 -s x,y Image size (default 640,480)

 -o format Output format (default x11)

examples:

 # Plot the performance of the vtcard and display on x11

 vtcardplot -d 2011-11-18 /tmp/vtcard.loop_rx.log

 # Show available output formats

 vtcardplot -o?

This is a script which uses gnuplot to graph the soundcard conversion rate and timestamp error logged by a

vtcard program. The vtcard logfile must be given and if no -d date option is supplied, the entire log file is plotted.

The offset graph shows the timing offset of the output stream relative to the system clock. A positive offset

indicates that the stream timestamp is late (has a higher timestamp value).

vtdate

Conversion and operations on timestamps

 vtdate [options] [timestamp|timespec]

options:

 -v Increase verbosity

 -i Integer output

 -n Output numeric timestamps

 -s Output ISO format timestamps

 -t secs Truncate to a multiple of secs seconds

 -a secs Add secs seconds to the timestamps

examples:

 # Get the current time as an ISO string

 vtdate -s now

 # Split a timespec into numeric start and end fields

 set -- `vtdate -n 2011-10-09_08:32:17.49,+2400`

 # Subtract an hour from a timestamp

 vtdate -a -3600 2011-10-09_08:32:17.49

 # Convert a numeric timestamp to ISO form

 vtdate -s 1318151537.49

This utility takes a timestamp or a timespec and prints their values to stdout in accordance with the -n and -s

options. Outputs have a fixed length canonical form, eg

 1318145537.490000

 2011-10-09_07:32:17.490000

If neither -n nor -s are given, both forms are output. Output fields are space separated and if a timespec is

given, the start and end times are output in separate fields. A -i option will discard the decimal point and

following digits.

This utility is intended for use in scripts that need to manipulate timestamps.

vtspot

Geographic and geomagnetic calculations, trilateration and triangulation.

 vtspot [options] meas1 [meas2 ...]

 vtspot -b standpoint forepoint

 vtspot -d standpoint bearing range

 vtspot -g point1 point2 [angle_step]

 vtspot -p standpoint forepoint crosspoint

 vtspot -s location timestamp

 vtspot -m site=file [...]

options:

 -v Increase verbosity

 -L Specify logfile

 -c factor Specify a velocity factor (default 0.9922)

 -n minsites Minimum number of sites to attempt a solution (default is all sites)

 -r residual Maximum residual to accept stroke solution, in units of measurement

 standard deviation (default 1.0)

examples:

 # Bearing and range of 44.6N,67.3W as seen from 53.7N,2.1W

 vtspot -b 53.7N,2.1W 44.6N,67.3W

 # Determine source from two arrival times and a bearing

 vtspot T/39.9N,74.9W/1334382837.867327 T/53.7N,2.1W/1334382837.884484 B/53.7N,2.1W/298

 # Calculate azimuth and elevation of the Sun

 vtspot -s 53.703N,2.072W 2017-12-21_12:06:30

 # Output great circle points in 2 degree steps

 vtspot -g 52.146N,8.458E 53.703N,2.072W 2

This program takes an arbitrary mix of arrival time and bearing measurements and calculates the most likely

source locations and times for the signal. All the calculations are performed using n-vectors to avoid

singularities at the poles.

Measurements may be given on the command line or in the standard input stream. Each measurement must

conform to one of the following formats:

 T/location/time[/std_dev]

 B/location/bearing[/std_dev]

 A/location1/location2/atd[/std_dev]

 I/ident

'T' measurements specify an arrival time, 'B' measurements specify a bearing, and 'A' records specify an arrival

time difference (for example from a cross-correlation). Each measurement can specify a standard deviation.

Arrival times are given as a timespec, see Time specifiers for the description of timespec. Bearings are given in

degrees mod 360. Standard deviations are specified in seconds for timestamps and ATDs, and degrees for

bearings. These default to 20e-6 seconds and 5 degrees. Locations are specified as latitude,longitude and the

following examples illustrate the formats recognised:

 53.703N,2.072W

 53.703,-2.072

 53:42:10.8N,2:04:19.2W

You can also give locations using a symbolic name listed in the spots file, see below.

The collection of measurements is referred to as a 'measurement set'. A measurement set must contain at

least two bearings, or three arrival times, or two arrival time differences. Combinations are allowed, such as

two arrival times and one bearing, or one ATD and a bearing. If the measurement set is given on the command

line, vtspot processes the measurement set and then exits. Multiple measurement sets can be presented to

vtspot on the standard input stream with one measurement set per line and each will be processed

independently.

An 'I' field in the measurement set tags the set with an identifying string token which appears in the output

records. This is useful when reading from standard input in order to associate each result with its measurement

set.

If a solution cannot be found for a measurement set because the measurements do not intersect anywhere (for

example one or more of the timestamps or bearings are not consistent with the others) then no output will be

made for that measurement set.

Some measurement sets will have two solutions, for example a pair of bearings or three arrival times will have

two exact solutions. Two solutions can also occur with some measurement sets where the receivers are not well

located with respect to the source.

Results go to standard output with the following format:

 ident index latitude,longitude timestamp residual km ns

The ident field will be missing if the measurement set did not supply a I/ident field. Index is 0 or 1 to

distinguish the two solutions possible with some measurement sets. The residual is the worst error of the

solution tested against each measurement of the set and is in units of standard deviations. km is an estimate of

the location accuracy in km. ns is the number of receiver sites contributing to the measurement set. An

example output looks like

 test1 0 44.594,8.948 1522493298.065420 0.42 2.04 3

 test1 1 39.928,8.475 1522493298.063946 0.01 0.02 3

This is a simulated lightning stroke received at three sites - thus two equally likely solutions.

Locations can be given symbolically using site names defined in a file named spots. An example spots file is

included in the package. This should be placed in the working directory or in the user's home directory. The

symbolic names can be used wherever the program expects a latitude,longitude.

A -b option computes the bearing of forepoint as seen from standpoint. A -d option computes the forepoint given

a standpoint, bearing and range in km.

vtspot can be used to match and solve batches of sferic TOGAs produced by vttoga -d. The source file for each

site is given with -m site=filename, where site is the latitude,longitude or symbolic name of the site, and filename

is the path to the output file of vttoga. At least six sites must be used and the sites should surround the

lightning source. Ideally twelve or more sites should be used. Up to 200 sites can be specified for matching.

Sferics in the source files are matched into lightning strokes and solved for the stroke location and time.

In matching mode, vtspot will output one record for each successfully resolved lightning stroke, for example

 370 -0.899,30.277 2018-04-18_00:01:12.422935 0.90 11.30 6

The fields are as follows:

1: An incrementing serial number to identify the solution, zero for the first solution in the batch;

2: The estimated location latitude,longitude;

3: The timestamp of the lightning stroke;

4: The residual value of the downhill simplex, in units of measurement standard deviations;

5: An estimate of the sferic timestamp error in uS;

6: The number of sferics (sites) used for this solution;

Timestamps are numeric by default. Option -o iso will produce ISO timestamp strings instead. An extended

matching output format can be requested with option -o ext. With the extended output format, the above

matching result will look like:

 A 370 -0.899,30.277 2018-04-18_00:01:12.422935 0.90 11.30 6

 R site-15 5575.7 -21.0 -13.2 1.827e-04 0.00

 R site-38 5963.5 -7.0 -10.1 1.705e-04 0.00

 R site-6 6241.9 -15.9 9.4 1.628e-04 0.00

 R site-35 11778.9 -51.2 -10.1 8.554e-05 0.00

 R site-19 12194.0 -61.0 9.4 8.254e-05 0.00

 R site-37 12405.3 -45.3 14.5 8.122e-05 0.10

 E

The normal output record now has an 'A' prefix. The following 'R' records list all the receivers and sferic

measurements which contributed to the solution. The 'R' records have fields:

1:The symbolic name of the site if given with the -m option, otherwise the latitude,longitude;

2:Distance from lightning stroke to receiver, in km;

3:Azimuth of the receiver from the standpoint of the stroke, in degrees;

4:Residual timing error, uS;

5:RMS amplitude of the sferic as reported by the site in its vttoga output file;

6:Path illumination factor, indicates the fraction 0.0 to 1.0 of the path which is in daylight;

The illumination factor in field 6 will be 0.0 for a path in darkness, 1.0 for entirely in daylight. Intermediate

values imply the sferic has crossed a terminator.

An 'E' record marks the end of data for that lightning stroke. On completion of the matching batch, a 'G' record

is output for each receiver site, for example:

 G site-37 1233 632 12.0

The 'G' record has the following fields:

1: The symbolic site name or latitude,longitude;

2: The number of sferics supplied by that site;

3: The number of sferics successfully matched into stroke solutions;

4: The sum of all the timing offsets, in units of uS;

Following the 'G' records, a final 'Q' records is output. This marks the end of output for the batch and supplies

some summary information. For example:

 Q 37800 20086 3034 1200

Fields are:

1: Total number of sferics processed;

2: Total number of sferics successfully matched;

3: Total number of stroke solutions;

4: The overall duration in seconds of the sferic data;

In this example, 20086 sferics are matched from 37800 supplied, a usage of 53.1%. On average each stroke

solution is composed of 20086/3034 = 6.62 sferics;

In matching mode, a -n sites specifies the minimum number of sites required for a solution. The value should

be 5 or more. A -r option specifies the maximum residual to accept a solution, in units of standard deviations.

The default value is 1.0.

The current version of vtspot uses a spherical Earth model. It also uses a fixed value of group velocity for all

paths. For these reasons the output locations can be quite inaccurate, especially at long range.

See Lightning location for advice on the use of vtspot in matching mode.

Geomagnetic field calculations using the IGRF are invoked with the -M option. To use -M you must first

download the IGRF coefficients in text file format from NOAA, https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

vtspot will look for the file igrf13coeffs.txt in the current directory and in your home directory.

Examples of geomagnetic calculations.

 vtspot -M1 53.703N,2.072W 2024-01-01

 vtspot -M3 53.703N,2.072W 2024-01-01

Option -M1 computes the field at ground level for the given location and time. The output is three numbers

giving the field components in units of nT:

 Blat: The latitudinal component, north positive;

 Blon: The longitudinal component, east positive;

 Br: The radial (vertical) component, down positive;

Option -M3 does the same but only uses the dipole component of the field model.

 vtspot -M2 53.703N,2.072W 2024-01-01

 vtspot -M4 53.703N,2.072W 2024-01-01

Option -M2 calculates the location of the geomagnetic conjugate of the given location by following the field line

until it meets the Earth at the opposite hemisphere. The output is the geographic lat,lon of the conjugate.

Adding a -o ext option also computes the maximum altitude of the field line above the Earth's center, in units

of Earth radius. This is very similar to the McIlwain L-shell, but not quite the same. Option -M4 does the same

as -M2 but only uses the dipole component of the field model.

vtubx

U-blox GPS configuration

 vtubx [options] device

options:

 -v Increase verbosity

 -F [tp,]Hz Set frequency output, Hertz

 A negative frequency reverses the polarity

 -P [tp,]secs Set pulse-per-second output, width in seconds

 A negative seconds reverses the polarity

 -S Save configuration to GPS non-volatile memory

 -b? Query SBAS

 -b+ Enable SBAS

 -b- Disable SBAS

 -rh Report hardware status

 -ra Report antenna settings

 -rv Report GPS software and hardware versions

 -f Output timestamp and position fix records

 -n Output NMEA sentences

 -l List satellites

 -N? Query NMEA protocol version

 -N version Set NMEA protocol version

 -g? Query GNSS settings

 -g options Setup GNSS

 -T? Query timing mode

 -T options Set timing mode

examples:

 # Set up a series 8 u-blox to use GPS, Galileo and GLONASS, and save settings

 vtubx -g +GPS=16,-SBAS,+Galileo=8,-BeiDou,-IMES,+QZSS=1,+GLONASS=14 -S /dev/ttyACM0

 # Set up a series 7 u-blox to use GPS and save settings

 vtubx -g +GPS=21,+QZSS=1,-SBAS,-GLONASS -S /dev/ttyACM0

 # Set up a series 7 u-blox to use GLONASS and save settings

 vtubx -g -GPS,-QZSS,-SBAS,+GLONASS=22 -S /dev/ttyACM0

 # Program timepulse 1 for 2mS pulse width and save settings

 vtubx -P 2e-3 -S /dev/ttyACM0

 # As above, but explicitly timepulse 1

 vtubx -P 1,2e-3 -S /dev/ttyACM0

 # Set timepulse 2 to 100 kHz frequency

 vtubx -F 2,100e3 /dev/ttyACM0

 # Disable SBAS on series 6

 vtubx -b- /dev/ttyACM0

 # Output fix data, one record per second

 vtubx -f /dev/ttyACM0

 # Initiate survey-in following by timing mode on a series 8 device

 # Survey-in for at least 8 hours and continue until all position

 # axes are accurate to within 1.5 metres.

 vtubx -T 8,1.5 -S /dev/ttyACM0

vtubx configures or queries the mode of operation of u-blox series 6, 7, and 8 GPS receivers. Command line

arguments are applied from left to right. Not all models of u-blox GPS will accept all commands. See U-blox GPS

for more information.

The -g option configures which GNSS networks the device will use. Use -g? to query the device to see which

GNSS can be used. The options string is a comma-separated list of GNSS. A leading minus disables use of that

network. A leading plus enables that network and the maximum number of receiver channels to use can be

specified. For example -g +GLONASS=14 enables the GLONASS network and allocates up to 14 receiver channels.

Options -P and -F configure a timepulse output to the specified frequency (Hz) or pulse width (seconds). Some

devices have two timepulse outputs and the frequency or width can be prefixed with the timepulse number. For

example, -P 2,0.1 sets timepulse output 2 to 100mS width. The rising edge of the pulse indicates the timing

mark. The timepulse output can be inverted by giving a negative frequency or width.

When used as a timing reference, SBAS should be turned off with -b- or equivalently, -g -SBAS.

Devices such as the M8T can be operated in timing mode, in which the position of the GPS is fixed and all of the

satellite measurements are devoted to timing accuracy. Timing mode is initiated by requesting a 'survey in'

using a -T hours,metres option. This puts the GPS into survey-in mode in which it averages its position for at

least the specified number of hours, until the position is settled within the specified number of metres on all

three axes. When survey-in is completed the device automatically enters timing mode. -S should be used to

store the surveyed position and timing mode setting.

 Soundcards

This package relies on ALSA or OSS drivers to deal with the soundcard. The program vtcard is used to read data

from the soundcard. For each soundcard, a vtcard process must be started to transfer data from the card to a

lock-free buffer.

Preferably, run the soundcard at its maximum sample rate;

A lock-free buffer should always be used for the output stream of vtcard;

Ensure the PC running vtcard is running ntpd.

If possible use the soundcard's line input rather than the mic input, because this will have a flatter

response and lower distortion.

Run vtcard with superuser privilege and it will use real-time scheduling for maximum reliability.

Begin by running vtcard with -vv which will report some information about the soundcard. For example,

 vtcard -vv -r96000 -d hw:0,0 @test

You may get an error such as "cannot set channel count" if the card does not have two channels, in which case

use option -c1. The output will look something like

 vtcard: buffer name: [@test]

 vtcard: using ALSA device hw:0,0

 vtcard: rate min 44100 max 96000

 vtcard: sample rate set: 96000

 vtcard: period size: 256 frames, 2666 uS

 vtcard: buffer size: 8192 frames, 85333 uS

 vtcard: periods per buffer: 32

 vtcard: nread: 256

 vtcard: avail min: 256

 vtcard: channels: 2 bytes: 2

 vtcard: using SCHED_FIFO priority 99

 vtcard: pre-run complete 96011.35

 vtcard: setup -2.612e-04 sr 96007.59 rr 95986.3 n=0 r=0.86

 vtcard: setup +3.878e-05 sr 96008.15 rr 96011.3 n=1 r=0.13

 vtcard: setup +3.024e-04 sr 96012.50 rr 96037.2 n=3 r=0.99

 vtcard: setup -2.767e-04 sr 96008.52 rr 95985.9 n=4 r=0.91

 vtcard: setup +2.870e-05 sr 96008.93 rr 96011.3 n=5 r=0.09

 vtcard: setup +2.933e-04 sr 96013.15 rr 96037.1 n=8 r=0.96

 vtcard: setup -2.850e-04 sr 96009.05 rr 95985.8 n=9 r=0.93

 vtcard: run +2.715e-05 sr 96009.180 tadj +2.320e-06 rr 96011.7 offs +0.271mS r=0.09

 vtcard: run +2.122e-05 sr 96009.282 tadj +1.814e-06 rr 96011.2 offs +0.212mS r=0.07

 vtcard: run +2.246e-05 sr 96009.390 tadj +1.920e-06 rr 96011.4 offs +0.225mS r=0.07

 vtcard: run +2.070e-05 sr 96009.489 tadj +1.769e-06 rr 96011.4 offs +0.207mS r=0.07

 ...

The program runs in 'setup' state until it is happy with the smooth flow of data and then switches to 'run' state.

During 'setup' it looks for r= values less than one. If the r= value does not settle down the card will not go into

'run' state. In this event, note the default value of period size and use a -Ap= option to try different sizes. Stick

to powers of two and try values 2 or 4 times the default, or 1/2 or 1/4 of the default.

The buffer size is not important because vtcard should be scheduled promptly to read from the soundcard

driver whenever a single period is available.

Once the program enters 'run' state, it will deliver data into the output stream, in this case buffer @test. It will

take a minute or two to do the setup. Monitor the signal level in the buffer with

 vtstat @test

which will report the peak value. Adjust mixer controls so that the VLF signal is peaking around 0.2 to 0.5 which

leaves a small amount of headroom.

If at full mixer gain you are unable to reach a reasonable peak signal, that indicates you need more analogue

gain before the line input. If this is not available then you can use a -g option to apply a software gain to the

soundcard samples - at the expense of dynamic range. For example, if vtstat is reporting a peak of 0.1 at best,

then you might restart vtcard with a -g4 option.

If the card can do 24 bit conversion, you will probably need to use option -b32. The card returns 24 bit samples

in 32 bit words with the lowest significant byte set to zero.

If the soundcard conversion rate changes too fast for vtcard to deal with, or if the system clock makes a step

change or slews too fast, vtcard will drop back into 'setup' state. Output will stop until the 'run' state is regained

and processes taking data from the output buffer will detect a timing break when the stream restarts. To check

for this you can leave vtstat @test running and it counts up the number of breaks detected.

When satisfactory operation is obtained, restart vtcard with a -B option to background it, and a -L option to

create a log file.

When vtcard has been running for a few minutes, the offs value will be giving small random positive and

negative values, for example

2011/11/18 16:43:57 run +2.345e-06 sr 96011.471 tadj +2.004e-07 rr 96011.7 offs +0.023mS r=0.01

2011/11/18 16:44:07 run +4.275e-07 sr 96011.473 tadj +3.655e-08 rr 96011.5 offs +0.004mS r=0.00

2011/11/18 16:44:17 run -1.159e-06 sr 96011.467 tadj -9.938e-08 rr 96011.4 offs -0.012mS r=0.00

2011/11/18 16:44:27 run -1.901e-06 sr 96011.458 tadj -1.625e-07 rr 96011.3 offs -0.019mS r=0.01

2011/11/18 16:44:37 run -1.906e-06 sr 96011.449 tadj -1.629e-07 rr 96011.3 offs -0.019mS r=0.01

2011/11/18 16:44:47 run +5.188e-06 sr 96011.474 tadj +4.435e-07 rr 96011.9 offs +0.052mS r=0.02

2011/11/18 16:44:57 run -1.051e-07 sr 96011.473 tadj -1.278e-08 rr 96011.5 offs -0.001mS r=0.00

2011/11/18 16:45:07 run -1.430e-05 sr 96011.405 tadj -1.222e-06 rr 96010.1 offs -0.143mS r=0.05

2011/11/18 16:45:17 run +1.212e-05 sr 96011.463 tadj +1.035e-06 rr 96012.6 offs +0.121mS r=0.04

2011/11/18 16:45:27 run +1.944e-06 sr 96011.472 tadj +1.662e-07 rr 96011.6 offs +0.019mS r=0.01

2011/11/18 16:45:37 run -4.188e-06 sr 96011.452 tadj -3.580e-07 rr 96011.1 offs -0.042mS r=0.01

2011/11/18 16:45:47 run +9.563e-07 sr 96011.457 tadj +8.483e-08 rr 96011.5 offs +0.010mS r=0.00

2011/11/18 16:45:57 run -1.591e-06 sr 96011.449 tadj -1.360e-07 rr 96011.3 offs -0.016mS r=0.01

2011/11/18 16:46:07 run +2.988e-06 sr 96011.463 tadj +2.554e-07 rr 96011.7 offs +0.030mS r=0.01

2011/11/18 16:46:17 run -1.796e-06 sr 96011.455 tadj -1.535e-07 rr 96011.3 offs -0.018mS r=0.01

offs is the residual error of the timestamped stream with respect to the system clock. sr is the smoothed

sample rate, rr is the raw sample rate taken oven the previous 10 seconds.

You can use the script vtcardplot to graph the performance of the soundcard and timestamping. The script

scans the logfile of vtcard to extract the sample rate and timing offset columns. You must specify the full

pathname to the logfile, eg

 vtcardplot -s800,400 /tmp/vtcard.test.log

produces a plot size 800 by 400 on the x11 display. A date can be given with a -d option and vtcardplot will

report just that date. Otherwise it reports the whole logfile. Alternate output formats can be request with -o

option.

 vtcardplot -d 2011-11-18 -o 'png small' /tmp/vtcard.test.log > out.png

The graphs reveal the variation of souncard conversion rate. vtcard tracks these variations and the current

sample rate is reported in the output stream in the sample rate calibration factor. If the conversion rate

changes too quickly, vtcard will reset to setup state to reestablish timing. This should be avoided if possible. In

one case, resets occured on windy days and the problem was traced to a draught blowing in through the air

vents on an outdoor equipment cabinet and being drawn into the PC air intake. The cure in that case was to

glue some foam over the soundcard's conversion rate crystal to increase the thermal time constant.

In running state, vtcard applies two servo loops, one to slew the output timestamp error towards zero, and the

other to track the soundcard conversion rate. In setup state only the sample rate servo is active and this must

settle first before the program will enter run state and enable the timestamp correction loop.

Connections

Most sound cards and audio cables use the convention:

 Channel 1: Left, White or Black, Tip;

 Channel 2: Right, Red, Ring;

where the colour refers to the phono (RCA) plugs often used in audio break-out cables. Don't be too surprised if

you come across a cable or sound card which uses the opposite, with the channels swapped in either the

analog electronics or the digital sample frame.

Higher quality sound cards often have balanced inputs. These take the form of a pair of sockets, one for left,

the other for right, with each socket being a TRS jack or an XLR. Balanced inputs are much preferred for their

relative immunity to ground loop interference. You may find that using a balanced input saves having to have

an isolating transformer before the PC input (but you still need a transformer at the VLF receiver end of the

cable).

Bus devices

ALSA assignes device numbers to USB sound cards in an unpredictable order. This means that if you have more

than one USB sound device, they may not always appear with same device number when you reboot or when

you remove and reconnect the device or its hub. USB devices and hubs sometimes reset themselves in

response to a noise glitch and again the USB sound devices can reconnect with a new device number.

The same problem also occurs with PCI cards - a particular card will not necessarily be given the same ALSA

device number after a reboot.

These problems are especially acute when you have two or more identical devices as few sound interfaces

supply a serial number to the host.

To avoid these problems you can specify the physical port of the device via the -d option instead of using the

ALSA device name. Connect your sound devices and run the command

 vtcard -dq

which will produce an output something like

 card0 pci:0000:00:05

 card1 usb:1-7.6

 card2 usb:1-7.2

 card3 usb:1-7.4

 card4 usb:2-8

This PC has five sound devices: one internal PCI card and four USB devices. card4 is connected via port 8 of

host controller number 2. Host controller number 1 has an external hub attached to its port 7 and this hub has

three sound dongles connected to its ports 2, 4, and 6. After a reboot or some re-plugging, ALSA is likely to

assign the card numbers in a different order. To guarantee that a vtcard is using, say, the device attached to

port 4 of the external hub, use the option -d usb:1-7.4.

If vtcard is running and you unplug the USB device, vtcard will wait for a device to be reconnected to that same

port.

 Timestamps and alignment

The program vtcard assigns timestamps to stream packets by reference to the system clock, which should be

disciplined by ntpd. The resulting timestamps have an accuracy of about +/- 50mS. This is adequate for some

applications, for example SID monitoring and casual whistler detection. Other applications may require more

accuracy, for example:

Stereo listening: When signals from two soundcards are combined (vtjoin) into a single stream, each

stream needs to be timed to better than about 5mS in order to prevent audible artifacts;

Arrival-time triangulation: Estimating the point of origin of sferics, whistlers, and artificial signals,

based on difference of arrival time, requires accuracy of 0.1mS or better;

Coherent reception: Achieving phase coherence between two soundcards requires timestamp accuracy

much better than one sample period.

Precision frequency and absolute phase measurements: using vtnspec and vtsid.

For these applications, the program vttime will refine the timestamp by reference to timing signals within the

streams. A timestamp accuracy of better than 50nS can be achieved when vttime is given a good quality GPS

PPS reference.

Using a pulse-per-second

A channel of the soundcard must be

dedicated to receiving a PPS signal.

Typically a single channel of VLF will

occupy channel 1 of the soundcard

and the PPS will be on channel 2.

You can use one of three timing

pulse methods: centroid, pulse, or

edge. Whichever method you use,

the PPS channel must be treated as

a high quality low noise analog

Example PPS on the 2nd channel with VLF on channel 1.

The pulse has been shaped by an RC network for use with the centroid method.

A simple RC low pass filter to shape the PPS.

input to the soundcard, not a digital

signal. The pulse amplitude should

use most of the dynamic range of

the soundcard.

Centroid vttime measures the

centroid of the pulse, which must be

suitably shaped, typically with a

simple low-pass RC circuit, so that

the pulse rises and falls smoothly

with a well defined peak with no flat

(clipped) top. The ideal GPS pulse

width is around 2mS but 1mS to

10mS will work. The centroid timing

method can be used with any sound

card or A/D converter.

Pulse vttime measures the phase

center of a short rectangular GPS

pulse. The pulse should have a

duration between 0.5 and 2 sound

card sample periods, for example

10uS at 192k/sec, 40uS at 48k/sec.

This method can be used only if the sound card uses sigma-delta sampling, which is the case for most if not all

sound cards. This is your only option if the GPS provides a fixed short timing pulse (eg many Trimble devices).

Edge vttime measures the phase slope of the leading edge of a long GPS pulse. The pulse width should be

about 0.1 seconds or longer. This method also relies on using a sigma-delta sound card. It is your only option if

the GPS provides only a fixed duration long timing pulse (eg many Garmin devices).

With all three methods, best results are obtained if the GPS is isolated using an opto coupler such as the

TLP2955. The pulse method is the easiest one to use and is the recommended mode if your GPS supports a

short PPS width. The timing accuracy is limited by the signal/noise ratio of the sound card input but a raw

timing jitter well below 100nS is normally achieved.

Pulse shaping for centroid method

The simplest arrangement of RC filter is shown on the

right. The values of R and C can be calculated with

 Rin = input resistance of the sound card, ohms;

 Vf = full scale input amplitude of the soundcard, volts;

 Vp = pulse amplitude out of the GPS, volts;

 Pw = pulse width, seconds

then

 R = Rin * (1.25 * Vp/Vf - 1)

 C = Pw/(pi * Rin * (1 - 0.8 * Vf/Vp))

The formulas aim to give a shaped pulse which peaks at

about 0.8 of the sound card full scale. For maximum noise

immunity, run the PPS channel of the sound card at its lowest gain if possible, and Vf should be measured at

that setting.

It is desirable for the time constant of the RC shaping network to have low temperature dependence or be kept

at a fairly constant temperature, as this affects the delay between leading edge and centroid and therefore

directly affects the timing calibration.

This arrangement is very simple and will get you up and running quickly but may not perform very well. The

problem is that when the GPS drives the PPS high, the PPS signal is connected to the supply rail of the GPS

which will carry a lot of noise and ripple. This noise is then imposed on the shaped PPS which leads to an

irregular centroid measurement.

An improved circuit is shown below.

An opto-isolated PPS signal.

An opto isolator with a logic level ouput is used to decouple the GPS supply from the PPS signal. Its output logic

driver can then be supplied from a clean voltage rail. It is also possible to keep the GPS ground separate from

the sound card ground. The R and C values are calculated as above.

The input stream to vttime must be reasonably well timestamped by vtcard which is ensured by running ntpd on

its host. vttime uses the incoming timestamp to get a rough idea of when to look for the pulse. It is convenient

to use gpsd as a timing source for the ntpd.

Timing system setup

Assume that the raw soundcard signal is available in a buffer @raw, with VLF on channel 1 and a PPS on channel

2. Then test vttime by running

 vttime -vv -m centroid+,c=0 -c2 @raw @timed

The output will look something like

 vttime: selected channel: 1 = @raw:1

 vttime: selected channel: 2 = @raw:2

 vttime: channels: 2, input rate: 192000

 vttime: calibration offset: 0.000e+00

 vttime: buffer size: 703 blocks, 29.995 seconds

 vttime: break detected on ++9802: 79.869

 vttime: wild PPS pulse interval 19829.855520 - skipped

 vttime: st0 PPSpmr 164.4 PPSmad 0.000uS in 22.358mS out 0.000uS rate_err 3.38 inrate 192001.6895 int 192003.3791

 vttime: inrate 192002.6570 int 192003.3424

 vttime: st0 PPSpmr 164.5 PPSmad 0.041uS in 22.259mS out 6.639uS rate_err 0.71 inrate 192003.0122 int 192003.3674

 vttime: st0 PPSpmr 164.6 PPSmad 0.055uS in 22.227mS out 3.549uS rate_err 0.40 inrate 192003.2118 int 192003.4114

 vttime: st0 PPSpmr 164.3 PPSmad 0.055uS in 22.194mS out 1.537uS rate_err 0.15 inrate 192003.2889 int 192003.3659

 vttime: st2 PPSpmr 164.0 PPSmad 0.055uS in 22.162mS out 0.778uS rate_err 0.08 inrate 192003.3020 int 192003.3678

 vttime: st2 PPSpmr 164.1 PPSmad 0.054uS in 22.130mS out 0.949uS rate_err 0.07 inrate 192003.3138 int 192003.3729

 vttime: st2 PPSpmr 164.3 PPSmad 0.068uS in 22.097mS out 0.859uS rate_err 0.02 inrate 192003.3180 int 192003.3387

 vttime: st2 PPSpmr 164.1 PPSmad 0.076uS in 22.066mS out 1.173uS rate_err 0.09 inrate 192003.3333 int 192003.4100

 vttime: st2 PPSpmr 163.9 PPSmad 0.074uS in 22.034mS out 1.159uS rate_err 0.05 inrate 192003.3417 int 192003.3834

 vttime: st2 PPSpmr 164.0 PPSmad 0.074uS in 22.002mS out 1.186uS rate_err 0.05 inrate 192003.3501 int 192003.3924

The program spends a little time in state st0 which is a setup state, then switches to st2 which is the normal

running state. The output reports a value PPSmad which is the mean absolute deviation of the interval between

consecutive centroids. This should be quite a bit less than a uS if everything is working. PPSpmr is the peak/mean

ratio of the PPS channel and should be 50 or 100 or more.

Allow vttime to run a while in foreground to see that it is stable, then restart in background, giving it a -B option

and specify a -L logfile.

The output channel @timed contains the VLF signal on channel 1 and the timing pulse on channel 2.

For accurate frequency and phase measurement, the above is sufficient. If timestamp accuracy is required,

then the centroid offset, which was set to zero above, needs to be set correctly. The setting can be improved by

disconnecting the VLF and feeding the raw rectangular PPS pulse into channel 1 of the soundcard via a small

capacitor so that a short sharp pulse, just 1 or 2 samples wide, is captured. There will be two such pulses, one

for the leading edge and another for the trailing edge of the PPS. Use vtscope or vtplot, or examine the ASCII

data produced by vtraw -oa to measure the timestamp at which the the leading edge pulse on channel 1 begins

to rise. This will probably be slightly offset from the stream timestamp's second mark. Adjust the c= value to

correct for this. If the leading edge pulse starts early with respect to the stream timestamp, this means the

stream timestamp is late with respect to UT and the centroid offset needs to be increased by that amount.

With the method described above, the centroid offset can be calibrated to about the nearest sample. Further

improvement requires some ingenuity.

Timing I/Q data

The timing method iqping works with an I/Q input stream which contains a 1PPS in the form of a short RF pulse.

vttime uses the centroid of the pulse to locate the second marks, and the center frequency of the pulse to

determine the frequency offset of the I/Q data. The output is an I/Q stream which has been resampled to UT

synchronous samples with corrected center frequency.

The iqping method requires the following method options:

 f= The approximate frequency (positive or negative Hz) of the timing pulse

 in the input stream;

 bw= The bandwidth over which to analyse the timing pulse;

 f= The correct frequency of the pulse;

It is also necessary to supply a c= centroid offset to calibrate the delay between the second mark and the

centroid of the timing pulse envelope.

As an example of the use of this timing method to discipline the time and frequency of an RTL-SDR (RTL2832U)

receiver for a precision timed meteor forward scatter receiver, see http://abelian.org/meteor/

 RTL2832U

Installation

On Ubuntu, you can install the librtlsdr library with

 apt-get install librtlsdr-dev

Otherwise, download from https://codeload.github.com/steve-m/librtlsdr/tar.gz/v0.5.2 and build with:

 tar xzf librtlsdr-0.5.2.tar.gz

 cd librtlsdr-0.5.2

 mkdir build

 cd build

 cmake ../

 make install

 ldconfig

You may also need to install libusb development files.

To include vtrtlsdr, you must configure with the option --with-rtlsdr.

If you find that

 vtrtlsdr ... | vtmix -c1,-j

gives you lower sideband (inverted spectrum) instead of upper sideband as you would expect, then use

vtrtlsdr -q to invert the Q signal to put things right.

Annoyingly, librtlsdr throws lots of gratuitous messages to stderr during setup. You could redirect stderr but

then you lose your own log messages unless you're using -L. Determined users will hack into the librtlsdr

source to clean it up.

 Hints and Tips

https://codeload.github.com/steve-m/librtlsdr/tar.gz/v0.5.2

A reassigned spectrogram produced by vtevent brings out the tendrils of triggered emission caused by this whistler.

Playing a stream

Use vtraw -ow to convert the stream to WAV format and pass this onto aplay or whatever raw PCM player you

use. You may want to resample the stream first, filter it, or change the number of channels. For example, to

play the 2-channel stream @source at a 44100 sample rate, you might do

 vtresample -r44100 -q1 @source | vtraw -ow | aplay -

You can produce mp3 using lame. For a mono stream at 64kbps,

 vtresample -r44100 -q1 @source | vtraw -ow | lame -b64 -mm - - > output.mp3

To produce a vorbis file or stream, you don't need to convert to raw first, just pipe the data through vtvorbis -

ep,

 vtresample -r44100 -q1 @source | vtvorbis -ep

You can configure xinetd to run any of these pipelines in response to a network connection, making an easy way

to distribute a playable stream on your LAN.

Whistler detection

This is very straightforward because vtevent requires little or no configuration and automatically adjusts itself to

the characteristics of the input stream. It is desirable to reduce the sample rate to 32k/sec or 48k/sec and filter

the hum first before presenting the signal to vtevent. For example, with a stream @raw containing a single E-field

or loop signal, the following might be used,

 vtresample -r32000 @raw | vtfilter -ath=6 | vtevent -v -d outdir

If orthogonal loops are available, whistler bearing and polarisation can be extracted if the program is given a -p

option. For this to work properly, the two or three inputs must be calibrated and corrected for phase response

using vtfilter -e eqmap. In 3-axis mode of operation, the whistler data shown here has been compiled.

Detected

whistlers are

captured and

saved under the

directory outdir.

For each event,

the program

records a

thumbnail

spectrogram, a

6 second stream

file, and a text

file containing

information

about the event.

Examples are

found in the

event pages

under here.

The event

detector applies

principal component analysis to the short-term Fourier representation of the signal to identify regions of the F,T

space that contain curvilinear features. A Hough transform then recognises when several regions combine to

conform to a whistler curve. Risers are detected by the presence of sufficient regions containing rising features.

The detector is not very sensitive to diffuse activity such as hiss bands or diffuse chorus.

The program normalises the input signal by looking for the VLF noise floor in between the sferics and then the

signal is equalised and the dynamic range compressed with respect to the this.

Weak signal detection

http://abelian.org/vlf/wh110410/
http://abelian.org/vlf/

A 5uW ERP rubidium controlled carrier from DF6NM received at 1030km range.

When the received signal is accurately timestamped by GPS using vttime, it is suitable for extraction of weak

narrow-band signals such as used by radio amateurs. During reception the signal should be passed through

vttime and into raw storage via vtwrite. Signal detection is then carried out during post-processing using vtread

to extract the raw data.

The tool to use for narrow band detection is vtnspec. It is essential to blank the sferics from the signal before

passing it to vtnspec and in turn, to operate properly, the blanker vtblank must have its input stream band-

limited to a width of 2 or 3kHz. Prior to band-pass filtering, any beam synthesis and steering should be

performed by vtmix on the raw signal extracted by vtread.

For example, to look for a signal at 8970.00245Hz which was transmitted for one hour starting 2011-08-12

06:15 UT, you might use something like the following pipeline,

 vtread -T2011-08-12_06:15,+3600 /rawdir |

 vtmix -c 0.643,-0.766 |

 vtfilter -h bp,f=8970,w=3000 |

 vtblank -a12 -d0 -t1 |

 vtnspec -f 8970.00245 -w0.040 -r278e-6 > spectrum.dat

vtread extracts 3600 seconds of signal from orthogonal loops stored in /rawdir and the vtmix produces a single

output channel synthesising a loop oriented on the desired bearing. vtfilter limits the bandwith to +/-1.5kHz of

the operating frequency and the options to vtblank are reasonably optimum for normal VLF.

vtnspec analyses the spectrum over the range 8970.00245Hz +/-20mHz using frequency bins of width 278uHz,

which is 1/3600 seconds. The output file is ASCII with frequency in column 1 and RMS amplitude in column 4.

A spectrum plot can be scripted with

something like the following

 echo "set terminal png small

 set style data lines

 set xlabel 'Frequency - 8970Hz'

 set ylabel 'Relative amplitude'

 unset title

 plot 'spectrum.dat' using (\$1 - 8970):4

 " | gnuplot > spectrum.png

or you can just use your favourite plotting tool

interactively. The example spectrum on the

right is produced by commands very similar to

above. This is an eight hour integration of a

5uW transmission from DF6NM at a range of

1030km. Column 4 has been turned into fT by

multiplying by the system's calibration factor.

Storing the raw signal and then post-

processing is strongly recommended, as it allows different antenna orientations, polarisations, and bandwidths

to be tried.

If the signal is strong enough, columns 2 and 3 of the output of vtnspec can be used to report the absolute

phase of the received signal. To do this, it is first necessary to establish the average frequency of the signal,

then re-run the analysis using a vtnspec set for a single bin centered on the average frequency. Running a

sequence of short, overlapping single bin 'spectra' allows the signal phase to be reported against time. This

reveals the variations in path length and will identify glitches in the transmitter phase and gives some idea of

the maximum symbol duration usable by differential phase shift keying.

Stream server

A simple stream server can be set up using vtcat and xinetd. Assume you have a buffer called @source on the

server which you want to make available to other hosts on your LAN, on demand. Define a service with xinetd

by creating a file /etc/xinetd.d/vt-source, containing the following

 service vt-source

 {

 type = UNLISTED

 id = vt-source

 port = 4420

 socket_type = stream

 protocol = tcp

 user = root

 wait = no

 disable = no

 only_from = 192.168.2.0

 server = /usr/local/bin/vtcat

 server_args = @source

 }

You might want to pick your own spare port and suitable user ID. Reconfigure xinetd with the command

 killall -HUP xinetd

Now, when anyone connects to port 4420 on the server, they will receive the output of the command

 /usr/local/bin/vtcat @source

Clients can then connect to and receive the stream using netcat, for example,

 nc server 4420 | vtstat

and so on. Of course, you can be more creative with the server command and arguments. For example you

might prefer to stream vorbis encoded, in which case you might have

 server = /usr/local/bin/vtvorbis

 server_args = -e -q0.8 @source

in the xinetd service definition file.

Setting up a stream server doesn't get much simpler than this.

Storage and retrieval

It is strongly recommended to set up a signal database to store raw or raw and timed, VLF signal. Disk space is

cheap these days and there is no difficulty keeping 10 days or so of raw signal. With this facility, you have

several days in which to hear about interesting events such as whistlers, aurora, flares, GRBs, TLEs, meteor

fireballs, earthquakes, satellite re-entries, amateur radio transmissions, and so on.

Create a directory or perhaps mount a separate filesystem, to hold the data and use vtwrite to build the data

files. Store the data as raw as possible (unfiltered and unequalised) although if you are using a GPS timing

system, it is better to pass the raw data through vttime first before storage. You may also want to apply

vtresample if you decide not to store at the full sample rate of the soundcard.

Assuming you have one or more channels of data direct from the soundcard in a buffer called @raw, and a raw

data filesystem mounted on /rawdata, then create daily data files with

 vtwrite -B -G86400 @raw /rawdata

The stored format will be the same (f8,i2,i4, etc) as that of the buffer @raw. Maybe your raw buffer is 32 bits and

you prefer to store in 16 bits, which should be satisfactory providing the VLF signal levels are using most of the

16 bit dynamic range. Then you must pass the signal through vtcat to change the sample format, eg with

 vtcat -B @raw -- -,i2 | vtwrite -B -G86400 /rawdata

We are using -B options to everything here so that the programs run in background. vtwrite starts a new file

every 86400 seconds, ie one day, beginning at midnight. It will also start a new file whenever it sees a timing

break on the input stream.

It is most desirable to have the raw data storage on a different host to that running the soundcard(s). This

prevents vtcard operation being compromised by heavy use of the retrieval program vtread. In this case, use a

network connection to transfer the data. For example, on the machine called 'bar' hosting the soundcard and

raw buffer, run

 vtcat -B @raw ++foo,9876,i2

and on the machine called 'foo' which is to run the data storage, use

 vtwrite -B -G86400 ++9876 /rawdata

The use of '++' here allows either machine to start up first after a reboot, and causes the connection to be re-

established after a network interruption.

If you're running multiple receiver channels, it is desirable to join them into a single multi-channel stream

before storage.

The data files created in /rawdata can be used directly as input into any of the VT programs, but in most cases

portions of data will be selected by using vtread to extract a particular time range, which is much faster and

more efficient. For example, suppose you hear that there was a well documented TLE event occurring at say

2011-08-14, 16:37:25.256, and you want to see if you have the associated sferic, then you might run

 vtread -T2011-08-14_16:37:25.240,+50e-3 /rawdata | vtraw -oa > data.txt

which extracts 50mS of raw signal into data.txt which can then be plotted using gnuplot. A more refined

command would run the data through vtfilter to remove the hum first, and this requires the data extraction to

begin 10 or 20 seconds earlier to allow the automatic notch filter time to dispose of the hum. A suitable

pipeline would be like

 vtread -T2011-08-14_16:37,+30 /rawdata |

 vtfilter -ath=6 |

 vtcat -T2011-08-14_16:37:25.240,+50e-3 |

 vtraw -oa > data.txt

Here, vtread starts early and extracts 30 seconds of data which is hum filtered, and vtcat is used to select the

exact time range to be plotted. Of course, if you're doing a lot of this, you will have the above pipeline and the

plotting ready in a script. See Time domain plots for help with the plotting of short signals.

SID monitoring

The toolkit contains an advanced SID monitor vtsid which is capable of monitoring multiple signals and records

amplitude, bearing, and absolute phase. It can also capture the full spectrum of the VLF band. Data compiled

by vtsid is stored in a database and the data is queried using vtsidex.

The procedure is to combine all the received channels into a single stream, pass this through vtfilter to apply

your phase equalisation map, and send it all into vtsid. For example

 vtfilter -e eqmap @source | vtsid -vc config

You will have assigned a directory for storage of monitor and spectrum data, and prepared a configuration file

config to suit your site and available stations. The buffer @source is expected to contain your combined signals,

with timestamps polished by vttime if phase information is to be extracted.

A template configuration file is included vtsid.conf, - copy and edit this. A complete and up-to-date list of VLF

stations is maintained by Lionel Loudet, available here.

Convenient monitoring intervals are 5 seconds for monitored channels and 120 seconds for spectrum data. If

you are looking for high speed events such as LEPs, it is advisable to run a separate copy of vtsid configured to

monitor just the relevant frequencies at a higher rate, eg 20 samples per second. In this case, distinct data

directories must be used for each vtsid.

When vtsid is configured with a monitor_interval of zero, it will output records as often as possible and the rate

is determined by the resolution or bins configuration. To obtain rapid sampling you must sacrifice frequency

resolution. For example, configuring the resolution to 50Hz with

 monitor_interval 0

 resolution 50

produces an output record every 20mS. You will need to set options mod=90,fast against any MSK monitors when

sampling at high rates.

The options -m ident -t can be used to look at the current output for the specified monitor, for example,

 vtsidex -mNAA -t -oh10 /siddata

produces an output like

 ts a1 a2 cp1 b180

 2011-11-14_09:16:22.3492 1.31e-03 2.31e-04 156.6 104.6

 2011-11-14_09:16:27.3839 1.31e-03 2.34e-04 156.0 104.7

 2011-11-14_09:16:32.4186 1.29e-03 2.27e-04 165.1 104.5

 2011-11-14_09:16:37.4533 1.32e-03 2.30e-04 152.9 104.6

 2011-11-14_09:16:42.4879 1.31e-03 2.29e-04 158.7 104.6

 2011-11-14_09:16:47.5226 1.32e-03 2.32e-04 154.6 104.6

 ...

which continues until you terminate the program. The -oh10 option produces a heading every 10 records. a1,a2

are the RMS channel amplitudes averaged over the 5 second monitor inverval. cp1 is the MSK carrier phase

(mod 180) and b180 is the apparent bearing of the incident signal. The columns reported will depend on the

configuration of vtsid. In this example, vtsid is being fed with signals from a pair of loop antennas so there are

two amplitude columns and a bearing column, and the 'phase' keyword is included in the config file so the

http://abelian.org/vlfrx-tools/vtsid.conf.html
http://sidstation.loudet.org/stations-list-en.xhtml

program issues a phase column. If an E-field signal is also supplied to vtsid, it will report three amplitude

columns and a 360 degree bearing column b360.

A similar vtsidex command is used to extract historical data, with a -T option specifying the time range,

 vtsidex -mNAA -T2011-10-06_23:30,+3600 -ote /siddata > data.txt

Here, a -ote option causes unix epoch timestamps to be produced which is convenient with the '%s' time

format specifier in gnuplot. To plot the fluctuating phase and apparent bearing of NAA, you might then use

gnuplot commands like

 set xdata time

 set time format '%s'

 set format x '%H:%M'

 plot 'data.txt' using 1:4 title 'phase', '' using 1:5 title 'bearing'

The -t and -T options can be combined, for example

 vtsidex -mNAA -Ttoday, -t -oh20 /raw/sid

reports everything from the previous midnight and then continues to follow the incoming records. Note the

comma after 'today' which indicates there is no closing time.

The package includes a shell script vtsidplot which runs vtsidex and plots its output data using gnuplot. See

vtsidplot for details. You can copy this script to a new name and customise to your local requirements. For

example you can modify the scripts to factor in your receiver calibrations to plot vertical axes directly in pT or

uV.

If you have several monitors and you want to plot them all together, you can make a simple script to run

vtsidplot -o png on each monitor, all with the same -T timespec and then use the montage program to produce a

composite plot.

Note that gnuplot cannot handle fractional timestamps. Therefore when there is more than one sample per

second, you must make your own arrangements for plotting. gnuplot can still be used but the timestamp from

vtsidex -ote must be treated as a numeric field. One solution is to subtract the previous midnight from the

timestamp and plot the remainder as a 'Seconds since midnight' x-axis. Alternatively, subtract the first

timestamp from all the timestamps so that the x-axis becomes an offset in seconds. The option -otr tells

vtsidex to do this.

If vtsid is configured to log spectrum data, you can produce spectrograms from the stored data. See vtsidgram

and Spectrogram plots for details.

Time domain plots

The toolkit contains a script vtplot to do simple

time domain plots of a signal stream. Simply run

a short length of stream into vtplot to get a

display on your X terminal,

 vtcat -E0.01 @source | vtplot

Make sure you have something in the pipeline

which restricts the length of the stream to a

short sample. You can add a label to the X

window by using

 vtplot -o "x11 title 'My signal'"

The mouse acts as a cursor in the persistent

display window. Type a 'q' into the window to

remove it. Send the output to an image file with

 vtplot -o "png small" > image.png

To customise plotting for your own requirements,

for example you might want to do something

different with the time axis or layout, copy vtplot

to a new name and edit as required.

If you prefer another plotting program, or want

to use gnuplot interactively, just use vtraw -oa to

A sferic received by a pair of loop antennas, rendered by vtplot.

A strong whistler set against a background of natural VLF hiss.

run the data into an ASCII file and apply your

favourite tools to that.

Spectrogram plots

A simple script vtsgram is included which

produces spectrograms of short (up to a

few minutes) time periods. It is a front-end

for the Sox utility and assumes the installed

version of Sox supports the spectrogram

option. The example on the right was

produced by the pipeline

 vtread -T2011-05-29_05:30:40,+60 /r3/raw |

 vtfilter -ath=6 -g4 -- -:1 |

 vtresample -q2 -r30000 |

 vtcat -T2011-05-29_05:30:53.3,+2.0 |

 vtsgram -p200 -b300 -s '-z60 -Z-30' > img840.png

A slightly longer than necessary section of

raw data is extracted by vtread so that the

filter can have 10 or so seconds of

preamble in order to settle its automatic

hum notching before the whistler comes

along. The stream is resampled to 32k

which sets the vertical scale of the

spectrogram, and the -T option to vtcat is

the one that selects the period of signal to

plot.

The -s option allows extra options recognised by Sox to be passed along, in this case to set the z-axis range.

These Sox options must be quoted into a single argument to vtsgram.

A second way to produce spectrograms is to use vtwspec or vtnspec to produce spectrum data and use the pm3d

mode of gnuplot to do the plotting. This requires some scripting to run the spectrum analyser repeatedly, sliding

an overlapping transform window along the required time axis. The resulting collection of spectrum data must

be fed through awk to rearrange it for pm3d plotting mode. An example of this in operation is the real time

spectrogram here.

A third method makes use of the spectrum data logged by vtsid. This is extracted by vtsidex for the required

time range, rearranged by awk and plotted as above with gnuplot. This is well suited for quickly plotting long

spectrograms spanning a day or several days. An example is shown below and the package contains a script

vtsidgram for running these plots. Even longer time periods can be plotted this way by using synoptic sampling

of the spectrum.

http://abelian.org/vlf/fbins.shtml

A 24 hour spectrogram, produced by vtsidex into gnuplot pm3d, shows a typical diurnal variation of sferic activity.

Multi-channel reception

The program vtjoin brings together two or more streams having the same nominal sample rate and assembles

them into a single stream, using the timestamp and sample rate calibration information in the streams to align

the inputs. Normally, each of the input streams will have had its timestamp polished by vttime.

Using vtjoin, multiple soundcards from different hosts can be combined for antenna synthesis or polarisation

and bearing measurement, signals received on different sites can be merged for coherent reception or arrival

time difference measurement, and streams from different signal databases can be brought together for

analysis.

The streams are brought together onto one host and applied to vtjoin. For example, the following three

background commands collect three streams, two are on the LAN and the third comes in from a remote site via

vtvorbis

 vtcat -B ++6001 @vlf1

 vtcat -B ++6002 @vlf2

 nohup nc -ldk 6003 2>/dev/null | vtvorbis -B -d @vlf3 &

The contents of the three buffers are then combined,

 vtjoin @vlf1 @vlf2 @vlf3 - | vtfilter -e eqmap - @output

and it is convenient at this point to use vtfilter to apply an equalisation map to deal with any phase and

amplitude calibration adjustments if required. Note that an output stream must be explicitly given to vtjoin

otherwise it would try to use buffer @vlf3 for output.

The output buffer provides the input stream then for antenna synthesis using vtmix, arrival time difference

measurement using the cross-correlation function of vtcmp, and so on.

Filtering

The general purpose filter program vtfilter is a frequency domain filter. The input signal is transformed to the

frequency domain, multiplied by an array of arbitrary complex filter transform coefficients, then converted back

to the time domain. Some simple filter transforms can be specified by -h options on the command line. More

complex transforms can be constructed in a text file which is given to vtfilter with a -e eqmap argument. The

filter transform used is the product formed from all the given -h options and the eqmap.

An automatic notch filter is built-in to vtfilter and activated with the -a option which requires a threshold

argument. This is intended primarily for hum removal. An option -a th=8 should be sufficient for light hum and -

a th=4 for more severe cases. Use the largest value that you can. Lower values will remove more hum

harmonics but will increase the amount of reverberation. Values of -a th=3 and below will sound quite

unnatural. When first started, the automatic notch will take several seconds to locate the hum harmonics and

then the filter will activate. An example of the hum filter being activated can be heard here. The raw hum is

present for a few seconds until vtfilter applies automatic notches. The threshold in this example is -a th=7 as

the hum is fairly light and free of modulation sidebands.

http://abelian.org/vlfrx-tools/hum.mp3

General scheme for a calibrator to

align E-field and H-field phase

response. The AC source is stepped up

to a high voltage via the transformer,

which produces an electric field.

Current through the load resistor

produces a magnetic field in the loop

which is almost in phase with the

electric field.

You may wish to discard the initial few seconds of output when running the automatic notch to remove hum.

Just follow vtfilter with a vtcat -S10 to discard the first 10 seconds of output.

Phase equalisation

To achieve antenna synthesis and coherent reception involving multiple receivers, it is necessary to

compensate for differences in phase response of the receiving systems involved. The compensation is easily

applied using the -e eqmap function of vtfilter. The difficult part is establishing a sufficiently good equalisation

map. One useful tool for this is vtcmp with its -m pd180 and -m pd360 modes of operation. These modes compare

the phase and amplitude of a two channel stream in the frequency domain and produce an ASCII output data

file which reports the difference for each frequency bin.

A relatively straightforward case of phase equalisation is that of a pair of orthogonal loops. Presumably the two

loops and amplifiers are identically built and so will only have small differences in their phase and amplitude

responses. An end-to-end phase comparison can be performed by using a test loop placed near the antenna.

The test loop carries a small signal current sufficient to produce a clear signal in the receiver outputs. Both

loops should respond to this near-field signal with identical or inverted phase, depending on the location and

orientation of the test loop. In this case -m pd180 will report the residual phase difference, modulo 180 degrees.

Off-air signals can also be used for this. Only distant sources should be used,

as anything originating within 2000km or so will show considerable ellipticity of

polarisation which produces large phase differences between the orthogonal

loop signals. One option here may be to place the two loops in the same

orientation while calibrating. Distant MSK signals for spot frequencies, and

distant sferics for broad band calibration can be used. A suitable time must be

chosen when there are no nearby (<2000km) sources of sferics. When using

sferics for phase calibration, vtcmp must be set to do a long averaging and used

in -m pd180 mode so that it doesn't matter which quadrant the sferics are

arriving from.

Correcting the phase response between co-located E-field probes and loop

antennas is more difficult. A rough calibration can be performed by using

distant sferics and MSK stations as described above. For more precise

calibration, a test source can be arranged to produce both electric and

magnetic near fields in phase with one another, as illustrated on the right. The

load resistor must be rated to handle all the power from the signal source and

its resistance must be much higher than the reactance of the test loop so that

the loop current is in phase with the E-field antenna voltage. The test source is

placed near enough to the receiving antennas to obtain a good signal in both

fields. vtcmp -m pd360 or vtnspec can then be used to report the received phase

difference.

Equalising the phase of signals

brought together from remote

receivers is more difficult still. It

requires a test source in which the

test signal is synchronised to a time

standard such as a PPS from a GPS.

First the timestamping of the two

sites must be set as carefully as

possible via the c= parameter of

vttime at both sites. There may be a

residual systematic time difference

which should be identified and

corrected by a vtcat -a applied to

one of the sources. The vtcmp

program can again be used for

these timestamp calibrations, in its

-m cor mode of operation. This

reports the cross-correlation

between two channels. To confirm

time alignment to within a fraction

of a sample period it is necessary to

Arrival time differences of whistler and sferics between two sites 30km apart, produced by

vtcmp -m cor and rendered with gnuplot pm3d

A frame from the avi output of vtpolar -mf with

3-axis VLF reception. A sferic is arriving from the

west and the zig-zag line reveals the

'polarisation error' of the bearing as a function

of frequency. The central ring is some mains

hum and the blob to the north-east is a beep

from the Alpha navigation system.

upsample (vtresample) to a much

higher sample rate before using

vtcmp -m cor and fairly long averages

should be taken. Once the time alignment of the two sites is reasonable, a phase comparison and correction

can be made. It is probably necessary to repeat the time delay and phase correction steps iteratively, perhaps

by first establishing a good time and phase alignment at a low test frequency and then working upwards

through the range of interest to equalise the phase. A sanity check on the alignment between remote sites can

be made by measuring arrival time differences of suitably placed distant MSK stations. vtcmp -m cor is a very

good tool for ATD measurements. The image on the right shows arrival time differences of sferics and a whistler

received at two sites.

Polar displays

If crossed loop receivers are available, or crossed loops and an E-field

receiver, then vtpolar can be put to good use. The phase response of

the receiving systems must be matched over the frequency range to

be displayed and this can be achieved with the vtfilter -e eqmap

function.

An example is available at this link which displays about 35 minutes of

activity captured with 3-axis reception on 23rd Jan 2018. North is at

the top with the center DC and the perimeter at 24kHz. Circularly

polarised whistlers are arriving almost directly from above. The flashes

in the north-east are beeps of the Alpha navigation system and there is

sferic activity to the west and south west.

A script to retrieve raw signal data, filter and eq, and generate this AVI

goes something like

 ts=start_timestamp # Begin at this timestamp, integer seconds

 secs=length # Length in seconds

 vtread -T$((ts-30)), /raw |

 vtfilter -a th=5 -h hp,f=400,poles=2 -e eqmap -g8 |

 vtcat -T$ts,$((ts+secs)) |

 vtpolar -f vbr=500,abr=128,vcodec=h254 -s500 \

 -k0,r24000 -mf -am -gv=10 -ga=10 -p96,6,E > movie.avi

Raw data extraction is started 30 seconds early to give a bit of

preamble for the hum filtering autonotch and then a vtcat crops the

exact time period to display. The -p96,6,E indicates that the first channel is a loop oriented on 96/276 deg, the

second channel is oriented 6/186 degrees, and the third channel is the vertical electric field.

The ffserver uplink option is currently broken.

Analytic signals

It is easy to

generate an analytic

signal using vtmix,

for example

 vtmix -c1 -c-j

turns a single

channel stream into

a two-channel

stream in which

both channels are a

copy of the input

signal, channel 1 is

an exact copy and

channel 2 has all

frequency

components

http://78.46.38.217/wh180123b.avi

vtscope display with the original signal on channel 1 and the magnitude of the analytic signal on channel 2.

delayed by 90

degrees.

A most useful

application for the

analytic signal is to

extract the

envelope of a non-

stationary signal. An

example is the

sferic waveform

shown in the vtscope

image on the right.

Channel 1 is the

original waveform

and channel 2 is the

magnitude of the

analytic signal,

obtained using vtam.

The following

command was used,

 vtmix -c1 -c-j @vlf |

 vtam |

 vtjoin @vlf - - |

 vtscope

Extracting the

envelope in this way

allows the intensity and timing of an oscillatory signal to be examined without worrying about its phase. Useful

for timing sferics, whistlers, and the edges of timing signals such as MSF and DCF.

Antenna synthesis

Signals from several receivers can be combined in order to synthesise a desired response pattern. The program

vtmix performs the required mixing but first the signals must be brought together into a single stream and have

their phase and amplitude responses equalised. See Multi-channel reception and Phase equalisation for details.

In the following, assume this has been done and the combined signals are available in a buffer called @source.

This stream might contain a pair of orthogonal loop signals and one or more E-field signals.

In these notes, the convention is used that in right-hand circular polarisation, the field vectors are rotating

clockwise as seen from the source looking towards the receiver.

As a simple example, suppose @source contains two channels, one from each of two E-field receivers. Adding

their signals will double the signal amplitude but only increase the system noise by sqrt(2). The command

 vtmix -c0.5,0.5 @source @output

produces the summed output with the coefficients of 0.5 restoring the original signal amplitude.

A synthesised loop signal is derived from a pair of orthogonal loop signals with a command such as

 vtmix -c0.866,-0.5 @source @output

If ch1 is an E/W loop and ch2 is a N/S loop, and the loop polarities are such that a signal from the north east is

in phase in both loops then this will synthesise a loop oriented along 120/300 degrees. In general the

coefficient of the E/W loop should be sin(bearing) and that of the N/S loop, cos(bearing).

The synthesised loop has a dipole response and but this can be made unidirectional if @source contains an E-

field channel with its amplitude and phase correctly equalised. If loop polarities are as above with the

additional requirement of being in phase with the E-field given a signal incident from the north-east, the

command

 vtmix -c0.866,-0.5,1 @source @output

will produce a uni-directional response along the bearing 120 degrees. Loop signals from the back of the beam

will be equal in amplitude and opposite in phase to the E-field signal and be cancelled.

A whistler train and hiss band, seen in three different polarisations. From top to

bottom: RH circular, LH circular, vertical E-field.

Circular polarisations can be synthesised

from the orthogonal loop signals by giving

imaginary coefficients to vtmix. A

coefficient of 'j' advances a signal by 90

degrees and '-j' retards a signal. Adding a

delayed N/S signal to the undelayed E/W

signal produces a RH circular response,

 vtmix -c1,-j @source @output

or in terms of magnitude and phase

coefficients,

 vtmix -c1,1/-90 @source @output

A useful mix for looking at whistlers is to

synthesise both polarisations to produce a

2 channel output, with

 vtmix -cj,1 -c1,j @source @output

Whistlers are normally either strongly RH

or strongly LH polarised and therefore

when the above dual circular stream is

plotted on a spectrogram (vtsgram) one or

other of the channels will be significantly

stronger and may also have a better

signal/noise ratio than the original linear

polarised loop signals.

The spectrogram on the right was

produced using vtmix to generate the

three signals and was rendered by vtsgram.

This whistler and its echo train was

strongest in RH polarisation. The hiss is

also RH polarised.

Startup scripts

Hosts which are running vtcard will have to run amixer or ossmix to select and un-mute the line input and set the

PCM input gains. They must also ensure that the system clock is set and ntpd is running.

After vtcard is started it may take up to a minute or two before its output lock-free buffer is created. Before

launching programs which use the raw buffer, startup scripts should run vtwait on the buffer in order to wait for

the buffer to appear, otherwise programs attempting to use the buffer will fail immediately. For example,

 vtcard -Bvv -d hw:0,0 -b32 -r 192000 @raw,20,i4

 echo "waiting for @raw..."

 vtwait -t @raw || {

 echo "problem with buffer @raw" >&2

 exit 1

 }

 echo "@raw running"

 vtcat -B @raw ++somewhere,someport,i4

The script blocks on the vtwait until @raw is created and data appears.

It is likely that signal processing will be distributed across more than one host. Typically one or more hosts will

run vtcard and possibly vttime. Another will assemble and store data with vtjoin and vtwrite and will probably

host various other programs which operate on the live stream and process the output of vtread.

It is desirable that the routine processing pipelines will not collapse if one or more of the hosts involved is

rebooted, and if they are all starting up, the pipelines should assemble and begin work regardless of the order

in which the hosts start up. With this in mind, LAN stream connections between hosts should use the ++ syntax

to specify the network connections. WAN connections would need to have loops around ssh commands in order

to reestablish contact. A vtvorbis -e uplink to Icecast servers should use the -k option and vtvorbis -d programs

need to be put within a retry loop.

U-blox GPS

U-blox GPS modules are ideal for timing VLF signals, are readily available at low cost, reliable and well

documented, and are probably the most popular for this application. The program vtubx is included as a

convenient means to set up the GPS to the required mode of operation. vtubx is scriptable and avoids having to

find a Windows PC to run the u-center program.

The program supports the following u-blox series:

Series Supported GNSS

6 GPS

7 GPS or GLONASS

8 GPS, GLONASS, Galileo, QZSS, BeiDou

The 'T' versions, such as the M8T, support a fixed-position time mode which offers the best performance and is

ideal for VLF timing. The non-T versions have more than adequate performance.

Modules are available with NEO or LEO prefix:

NEO Built-in LNA, can be used with active or passive antennas

LEO No built-in LNA, must be used with active antennas

If possible, choose the NEO range.

To use vtubx you must first disable gpsd if it is running, to release the serial/USB port.

To activate time mode on modules that support it, initiate a survey-in with a command such as:

 vtubx -T 24.0,5.0 -S /dev/ttyACM0

This will make the survey-in average the position for 24 hours (to examine the full diurnal) and it will continue

to survey-in until the position is known to within 5 metres, representing a timing accuracy of about 17nS.

When the GPS decides survey-in is completed, it will then switch to time mode. vtubx -T? will then report time

mode active.

Lightning location

Locating the source lightning of sferics involves two programs: vttoga to measure the arrival time (and possibly

the bearing) of the sferics at at least three sites, followed by vtspot to perform the trilateration.

vtspot is run on a central computer which receives either baseband VLF signal, or the output from vttoga via

some network connection. The vttoga may be run on the receiver sites themselves, or if the sites send the

baseband signal back, it can run on the central computer. The choice depends on the available network

bandwidth. If possible it is better to retrieve the VLF signal from the receiver site - it can be used for other

purposes and can be monitored for quality.

The process only requires the 'H' records from vttoga, but the 'S' and 'T' records can also be returned if required

by the application.

It is convenient to process TOGAs in batches of a few minutes duration, using the -G option of vttoga. For

example

 vttoga -G 300 -i 6 -F 6000,16000 -d /togas @filtered

will create a new output file in the /togas directory at every 5 minute UTC boundary, ie HH:00, HH:05, and so

on. The output files will have name format /togas/YYMMDD-HHMMSS.

If the vttoga are running on receiver sites, the output files will need to be transferred over a network back to a

central computer. The best command for this purpose is rsync, which uses ssh for transport. The receiver

computers should have ssh keys set up so that they will accept login from the central computer without

password.

TOGA files can then be transferred periodically, with a command on the central computer such as

 rsync -a user@site1:/togas/ /togas/site1

 rsync -a user@site2:/togas/ /togas/site2

 ...

where /togas/site1 is a site-specific destination directory. The -a option is important to preserve the timestamp

of the TOGA files. Note that the source directory is terminated with / but the destination is not. The rsync

command will transfer both completed files and partially completed files.

The retrieved TOGA files must then be presented to vtspot running in its 'matching' mode, using -m options to

specify the TOGA batch file for each site. A typical vtspot launch script might look like

 batch=180501-120500

 OPTS=""

 for site in $(ls /togas)

 do

 file=/togas/$site/$batch

 [-s $file] && OPTS="$OPTS -m $site=$file"

 done

 vtspot -c0.9872 -v -o iso -o ext -f envelop=180 -f nearmax=12e3 -n6 -r1.7 $OPTS > output-$batch

The velocity factor of 0.9872 seems to work best for global lightning location.

The TOGA detection threshold at the receiver sites should be set so that the total rate of sferics from all the

sites does not exceed about 170 per second. If the aggregate sferic rate is much higher than this, vtspot will

not be able to reliably determine which sferics belong to which lightning stroke (too many overlaps) and the

output will begin to include isolated false solutions randomly distributed over the globe. The vttoga -r option

can be used to set the average TOGA measurement rate per site.

Successfully located lightning strokes can be listed from the output file by grepping the 'A' records:

 grep ^A < output-180501-120500

and the 'G' records provide a summary of the performance of each site:

 grep ^G < output-180501-120500

The output format of vtspot is designed to make it easy to work on the results using simple scripts.

You need a lot of receivers for lighting location to work well. At the very least, vtspot needs TOGAs from six

receivers and these should surround your region of interest. Indeed, vspot when running in matching mode, will

only output a stroke solution if it lies within a polygon formed by at least six receivers.

It often happens that you want to locate the source of a particular sferic. It is usually possible to identify the

sferic manually in the VLF recording, especially if it is a prominent sferic associated with something like a TLE.

In this case you can often estimate the location using only three TOGAs, which you can determine by running

short samples containing the sferic through vttoga. The measurement set for vtspot would then resemble

vtspot T/site1/1522493298.069741 T/site2/1522493298.065848 T/site3/1522493298.069540

vtspot will always produce two solutions for a case like this because the ATD hyperbolas for the two

independent baselines will intersect in exactly two places. In most cases it is clear which is the correct solution.

If you find that vtspot produces no output for your measurement set, then it is likely due to one of the arrival

time differences exceeding the light travel time of a receiver pair baseline. Re-run with a -v option to see which

is the problematic baseline. You may find that you have manually chosen a wrong sferic, or a TOGA

measurement is poor because the sferic waveform is distorted for some reason, eg receiver overload or a

multi-path effect. This often happens with a powerful stroke at short range. Your best option then is to try to

measure (from a time domain plot) the earliest arrival time of each sferic, and use those instead of the TOGAs.

Paul Nicholson vt12@abelian.org

mailto:vt12@abelian.org

